GLSVM: Integrating Structured Feature Selection and Large Margin Classification

High dimensional data challenges current feature selection methods. For many real world problems we often have prior knowledge about the relationship of features. For example in microarray data analysis, genes from the same biological pathways are expected to have similar relationship to the outcome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hongliang Fei, Quanz, B., Jun Huan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 367
container_issue
container_start_page 362
container_title
container_volume
creator Hongliang Fei
Quanz, B.
Jun Huan
description High dimensional data challenges current feature selection methods. For many real world problems we often have prior knowledge about the relationship of features. For example in microarray data analysis, genes from the same biological pathways are expected to have similar relationship to the outcome that we target to predict. Recent regularization methods on support vector machine (SVM) have achieved great success to perform feature selection and model selection simultaneously for high dimensional data, but neglect such relationship among features. To build interpretable SVM models, the structure information of features should be incorporated. In this paper, we propose an algorithm GLSVM that automatically perform model selection and feature selection in SVMs. To incorporate the prior knowledge of feature relationship, we extend standard 2 norm SVM and use a penalty function that employs a L 2 norm regularization term including the normalized Laplacian of the graph and L 1 penalty. We have demonstrated the effectiveness of our methods and compare them to the state-of-the-art using two real-world benchmarks.
doi_str_mv 10.1109/ICDMW.2009.39
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5360432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5360432</ieee_id><sourcerecordid>5360432</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a9c63315a955c4e4dd6bfe3db7440b58488a548dabec22e26fd59065ea0435eb3</originalsourceid><addsrcrecordid>eNo9zDtPw0AQBODjJRFCSiqa-wMOd7e7tpcOGQKRHKUIjzI6-9bRoWCQ7RT8exKBaGZG-qRR6sqaqbWGb-bF_eJt6ozhKfCRmnCWmyxlAjYuO1YjBxkl7IhP1IVFh0iQI57-A7hzNen7d2OMZUBmN1LLx3L1urjV83aQTeeH2G70auh29bDrJOiZ-MPQK9lKPcTPVvs26NJ3G9GLfcZWF1vf97GJtT_4pTpr_LaXyV-P1cvs4bl4Ssrl47y4K5NoMxoSz3UKYMkzUY2CIaRVIxCqDNFUlGOee8I8-Epq58SlTSA2KYk3CCQVjNX1728UkfVXFz98970mSPfu4Adrh1LX</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>GLSVM: Integrating Structured Feature Selection and Large Margin Classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hongliang Fei ; Quanz, B. ; Jun Huan</creator><creatorcontrib>Hongliang Fei ; Quanz, B. ; Jun Huan</creatorcontrib><description>High dimensional data challenges current feature selection methods. For many real world problems we often have prior knowledge about the relationship of features. For example in microarray data analysis, genes from the same biological pathways are expected to have similar relationship to the outcome that we target to predict. Recent regularization methods on support vector machine (SVM) have achieved great success to perform feature selection and model selection simultaneously for high dimensional data, but neglect such relationship among features. To build interpretable SVM models, the structure information of features should be incorporated. In this paper, we propose an algorithm GLSVM that automatically perform model selection and feature selection in SVMs. To incorporate the prior knowledge of feature relationship, we extend standard 2 norm SVM and use a penalty function that employs a L 2 norm regularization term including the normalized Laplacian of the graph and L 1 penalty. We have demonstrated the effectiveness of our methods and compare them to the state-of-the-art using two real-world benchmarks.</description><identifier>ISSN: 2375-9232</identifier><identifier>ISBN: 1424453844</identifier><identifier>ISBN: 9781424453849</identifier><identifier>EISSN: 2375-9259</identifier><identifier>EISBN: 9780769539027</identifier><identifier>EISBN: 0769539025</identifier><identifier>DOI: 10.1109/ICDMW.2009.39</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; Clustering algorithms ; Computer networks ; Conferences ; Costs ; Data mining ; Data processing ; Decision trees ; Machine learning algorithms ; Training data</subject><ispartof>2009 IEEE International Conference on Data Mining Workshops, 2009, p.362-367</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5360432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5360432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hongliang Fei</creatorcontrib><creatorcontrib>Quanz, B.</creatorcontrib><creatorcontrib>Jun Huan</creatorcontrib><title>GLSVM: Integrating Structured Feature Selection and Large Margin Classification</title><title>2009 IEEE International Conference on Data Mining Workshops</title><addtitle>ICDMW</addtitle><description>High dimensional data challenges current feature selection methods. For many real world problems we often have prior knowledge about the relationship of features. For example in microarray data analysis, genes from the same biological pathways are expected to have similar relationship to the outcome that we target to predict. Recent regularization methods on support vector machine (SVM) have achieved great success to perform feature selection and model selection simultaneously for high dimensional data, but neglect such relationship among features. To build interpretable SVM models, the structure information of features should be incorporated. In this paper, we propose an algorithm GLSVM that automatically perform model selection and feature selection in SVMs. To incorporate the prior knowledge of feature relationship, we extend standard 2 norm SVM and use a penalty function that employs a L 2 norm regularization term including the normalized Laplacian of the graph and L 1 penalty. We have demonstrated the effectiveness of our methods and compare them to the state-of-the-art using two real-world benchmarks.</description><subject>Cloud computing</subject><subject>Clustering algorithms</subject><subject>Computer networks</subject><subject>Conferences</subject><subject>Costs</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Decision trees</subject><subject>Machine learning algorithms</subject><subject>Training data</subject><issn>2375-9232</issn><issn>2375-9259</issn><isbn>1424453844</isbn><isbn>9781424453849</isbn><isbn>9780769539027</isbn><isbn>0769539025</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9zDtPw0AQBODjJRFCSiqa-wMOd7e7tpcOGQKRHKUIjzI6-9bRoWCQ7RT8exKBaGZG-qRR6sqaqbWGb-bF_eJt6ozhKfCRmnCWmyxlAjYuO1YjBxkl7IhP1IVFh0iQI57-A7hzNen7d2OMZUBmN1LLx3L1urjV83aQTeeH2G70auh29bDrJOiZ-MPQK9lKPcTPVvs26NJ3G9GLfcZWF1vf97GJtT_4pTpr_LaXyV-P1cvs4bl4Ssrl47y4K5NoMxoSz3UKYMkzUY2CIaRVIxCqDNFUlGOee8I8-Epq58SlTSA2KYk3CCQVjNX1728UkfVXFz98970mSPfu4Adrh1LX</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Hongliang Fei</creator><creator>Quanz, B.</creator><creator>Jun Huan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>GLSVM: Integrating Structured Feature Selection and Large Margin Classification</title><author>Hongliang Fei ; Quanz, B. ; Jun Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a9c63315a955c4e4dd6bfe3db7440b58488a548dabec22e26fd59065ea0435eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cloud computing</topic><topic>Clustering algorithms</topic><topic>Computer networks</topic><topic>Conferences</topic><topic>Costs</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Decision trees</topic><topic>Machine learning algorithms</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Hongliang Fei</creatorcontrib><creatorcontrib>Quanz, B.</creatorcontrib><creatorcontrib>Jun Huan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hongliang Fei</au><au>Quanz, B.</au><au>Jun Huan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>GLSVM: Integrating Structured Feature Selection and Large Margin Classification</atitle><btitle>2009 IEEE International Conference on Data Mining Workshops</btitle><stitle>ICDMW</stitle><date>2009-12</date><risdate>2009</risdate><spage>362</spage><epage>367</epage><pages>362-367</pages><issn>2375-9232</issn><eissn>2375-9259</eissn><isbn>1424453844</isbn><isbn>9781424453849</isbn><eisbn>9780769539027</eisbn><eisbn>0769539025</eisbn><abstract>High dimensional data challenges current feature selection methods. For many real world problems we often have prior knowledge about the relationship of features. For example in microarray data analysis, genes from the same biological pathways are expected to have similar relationship to the outcome that we target to predict. Recent regularization methods on support vector machine (SVM) have achieved great success to perform feature selection and model selection simultaneously for high dimensional data, but neglect such relationship among features. To build interpretable SVM models, the structure information of features should be incorporated. In this paper, we propose an algorithm GLSVM that automatically perform model selection and feature selection in SVMs. To incorporate the prior knowledge of feature relationship, we extend standard 2 norm SVM and use a penalty function that employs a L 2 norm regularization term including the normalized Laplacian of the graph and L 1 penalty. We have demonstrated the effectiveness of our methods and compare them to the state-of-the-art using two real-world benchmarks.</abstract><pub>IEEE</pub><doi>10.1109/ICDMW.2009.39</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2375-9232
ispartof 2009 IEEE International Conference on Data Mining Workshops, 2009, p.362-367
issn 2375-9232
2375-9259
language eng
recordid cdi_ieee_primary_5360432
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cloud computing
Clustering algorithms
Computer networks
Conferences
Costs
Data mining
Data processing
Decision trees
Machine learning algorithms
Training data
title GLSVM: Integrating Structured Feature Selection and Large Margin Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=GLSVM:%20Integrating%20Structured%20Feature%20Selection%20and%20Large%20Margin%20Classification&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Data%20Mining%20Workshops&rft.au=Hongliang%20Fei&rft.date=2009-12&rft.spage=362&rft.epage=367&rft.pages=362-367&rft.issn=2375-9232&rft.eissn=2375-9259&rft.isbn=1424453844&rft.isbn_list=9781424453849&rft_id=info:doi/10.1109/ICDMW.2009.39&rft_dat=%3Cieee_6IE%3E5360432%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769539027&rft.eisbn_list=0769539025&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5360432&rfr_iscdi=true