GLSVM: Integrating Structured Feature Selection and Large Margin Classification
High dimensional data challenges current feature selection methods. For many real world problems we often have prior knowledge about the relationship of features. For example in microarray data analysis, genes from the same biological pathways are expected to have similar relationship to the outcome...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 367 |
---|---|
container_issue | |
container_start_page | 362 |
container_title | |
container_volume | |
creator | Hongliang Fei Quanz, B. Jun Huan |
description | High dimensional data challenges current feature selection methods. For many real world problems we often have prior knowledge about the relationship of features. For example in microarray data analysis, genes from the same biological pathways are expected to have similar relationship to the outcome that we target to predict. Recent regularization methods on support vector machine (SVM) have achieved great success to perform feature selection and model selection simultaneously for high dimensional data, but neglect such relationship among features. To build interpretable SVM models, the structure information of features should be incorporated. In this paper, we propose an algorithm GLSVM that automatically perform model selection and feature selection in SVMs. To incorporate the prior knowledge of feature relationship, we extend standard 2 norm SVM and use a penalty function that employs a L 2 norm regularization term including the normalized Laplacian of the graph and L 1 penalty. We have demonstrated the effectiveness of our methods and compare them to the state-of-the-art using two real-world benchmarks. |
doi_str_mv | 10.1109/ICDMW.2009.39 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5360432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5360432</ieee_id><sourcerecordid>5360432</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a9c63315a955c4e4dd6bfe3db7440b58488a548dabec22e26fd59065ea0435eb3</originalsourceid><addsrcrecordid>eNo9zDtPw0AQBODjJRFCSiqa-wMOd7e7tpcOGQKRHKUIjzI6-9bRoWCQ7RT8exKBaGZG-qRR6sqaqbWGb-bF_eJt6ozhKfCRmnCWmyxlAjYuO1YjBxkl7IhP1IVFh0iQI57-A7hzNen7d2OMZUBmN1LLx3L1urjV83aQTeeH2G70auh29bDrJOiZ-MPQK9lKPcTPVvs26NJ3G9GLfcZWF1vf97GJtT_4pTpr_LaXyV-P1cvs4bl4Ssrl47y4K5NoMxoSz3UKYMkzUY2CIaRVIxCqDNFUlGOee8I8-Epq58SlTSA2KYk3CCQVjNX1728UkfVXFz98970mSPfu4Adrh1LX</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>GLSVM: Integrating Structured Feature Selection and Large Margin Classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hongliang Fei ; Quanz, B. ; Jun Huan</creator><creatorcontrib>Hongliang Fei ; Quanz, B. ; Jun Huan</creatorcontrib><description>High dimensional data challenges current feature selection methods. For many real world problems we often have prior knowledge about the relationship of features. For example in microarray data analysis, genes from the same biological pathways are expected to have similar relationship to the outcome that we target to predict. Recent regularization methods on support vector machine (SVM) have achieved great success to perform feature selection and model selection simultaneously for high dimensional data, but neglect such relationship among features. To build interpretable SVM models, the structure information of features should be incorporated. In this paper, we propose an algorithm GLSVM that automatically perform model selection and feature selection in SVMs. To incorporate the prior knowledge of feature relationship, we extend standard 2 norm SVM and use a penalty function that employs a L 2 norm regularization term including the normalized Laplacian of the graph and L 1 penalty. We have demonstrated the effectiveness of our methods and compare them to the state-of-the-art using two real-world benchmarks.</description><identifier>ISSN: 2375-9232</identifier><identifier>ISBN: 1424453844</identifier><identifier>ISBN: 9781424453849</identifier><identifier>EISSN: 2375-9259</identifier><identifier>EISBN: 9780769539027</identifier><identifier>EISBN: 0769539025</identifier><identifier>DOI: 10.1109/ICDMW.2009.39</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; Clustering algorithms ; Computer networks ; Conferences ; Costs ; Data mining ; Data processing ; Decision trees ; Machine learning algorithms ; Training data</subject><ispartof>2009 IEEE International Conference on Data Mining Workshops, 2009, p.362-367</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5360432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5360432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hongliang Fei</creatorcontrib><creatorcontrib>Quanz, B.</creatorcontrib><creatorcontrib>Jun Huan</creatorcontrib><title>GLSVM: Integrating Structured Feature Selection and Large Margin Classification</title><title>2009 IEEE International Conference on Data Mining Workshops</title><addtitle>ICDMW</addtitle><description>High dimensional data challenges current feature selection methods. For many real world problems we often have prior knowledge about the relationship of features. For example in microarray data analysis, genes from the same biological pathways are expected to have similar relationship to the outcome that we target to predict. Recent regularization methods on support vector machine (SVM) have achieved great success to perform feature selection and model selection simultaneously for high dimensional data, but neglect such relationship among features. To build interpretable SVM models, the structure information of features should be incorporated. In this paper, we propose an algorithm GLSVM that automatically perform model selection and feature selection in SVMs. To incorporate the prior knowledge of feature relationship, we extend standard 2 norm SVM and use a penalty function that employs a L 2 norm regularization term including the normalized Laplacian of the graph and L 1 penalty. We have demonstrated the effectiveness of our methods and compare them to the state-of-the-art using two real-world benchmarks.</description><subject>Cloud computing</subject><subject>Clustering algorithms</subject><subject>Computer networks</subject><subject>Conferences</subject><subject>Costs</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Decision trees</subject><subject>Machine learning algorithms</subject><subject>Training data</subject><issn>2375-9232</issn><issn>2375-9259</issn><isbn>1424453844</isbn><isbn>9781424453849</isbn><isbn>9780769539027</isbn><isbn>0769539025</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9zDtPw0AQBODjJRFCSiqa-wMOd7e7tpcOGQKRHKUIjzI6-9bRoWCQ7RT8exKBaGZG-qRR6sqaqbWGb-bF_eJt6ozhKfCRmnCWmyxlAjYuO1YjBxkl7IhP1IVFh0iQI57-A7hzNen7d2OMZUBmN1LLx3L1urjV83aQTeeH2G70auh29bDrJOiZ-MPQK9lKPcTPVvs26NJ3G9GLfcZWF1vf97GJtT_4pTpr_LaXyV-P1cvs4bl4Ssrl47y4K5NoMxoSz3UKYMkzUY2CIaRVIxCqDNFUlGOee8I8-Epq58SlTSA2KYk3CCQVjNX1728UkfVXFz98970mSPfu4Adrh1LX</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Hongliang Fei</creator><creator>Quanz, B.</creator><creator>Jun Huan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>GLSVM: Integrating Structured Feature Selection and Large Margin Classification</title><author>Hongliang Fei ; Quanz, B. ; Jun Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a9c63315a955c4e4dd6bfe3db7440b58488a548dabec22e26fd59065ea0435eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cloud computing</topic><topic>Clustering algorithms</topic><topic>Computer networks</topic><topic>Conferences</topic><topic>Costs</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Decision trees</topic><topic>Machine learning algorithms</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Hongliang Fei</creatorcontrib><creatorcontrib>Quanz, B.</creatorcontrib><creatorcontrib>Jun Huan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hongliang Fei</au><au>Quanz, B.</au><au>Jun Huan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>GLSVM: Integrating Structured Feature Selection and Large Margin Classification</atitle><btitle>2009 IEEE International Conference on Data Mining Workshops</btitle><stitle>ICDMW</stitle><date>2009-12</date><risdate>2009</risdate><spage>362</spage><epage>367</epage><pages>362-367</pages><issn>2375-9232</issn><eissn>2375-9259</eissn><isbn>1424453844</isbn><isbn>9781424453849</isbn><eisbn>9780769539027</eisbn><eisbn>0769539025</eisbn><abstract>High dimensional data challenges current feature selection methods. For many real world problems we often have prior knowledge about the relationship of features. For example in microarray data analysis, genes from the same biological pathways are expected to have similar relationship to the outcome that we target to predict. Recent regularization methods on support vector machine (SVM) have achieved great success to perform feature selection and model selection simultaneously for high dimensional data, but neglect such relationship among features. To build interpretable SVM models, the structure information of features should be incorporated. In this paper, we propose an algorithm GLSVM that automatically perform model selection and feature selection in SVMs. To incorporate the prior knowledge of feature relationship, we extend standard 2 norm SVM and use a penalty function that employs a L 2 norm regularization term including the normalized Laplacian of the graph and L 1 penalty. We have demonstrated the effectiveness of our methods and compare them to the state-of-the-art using two real-world benchmarks.</abstract><pub>IEEE</pub><doi>10.1109/ICDMW.2009.39</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2375-9232 |
ispartof | 2009 IEEE International Conference on Data Mining Workshops, 2009, p.362-367 |
issn | 2375-9232 2375-9259 |
language | eng |
recordid | cdi_ieee_primary_5360432 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cloud computing Clustering algorithms Computer networks Conferences Costs Data mining Data processing Decision trees Machine learning algorithms Training data |
title | GLSVM: Integrating Structured Feature Selection and Large Margin Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=GLSVM:%20Integrating%20Structured%20Feature%20Selection%20and%20Large%20Margin%20Classification&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Data%20Mining%20Workshops&rft.au=Hongliang%20Fei&rft.date=2009-12&rft.spage=362&rft.epage=367&rft.pages=362-367&rft.issn=2375-9232&rft.eissn=2375-9259&rft.isbn=1424453844&rft.isbn_list=9781424453849&rft_id=info:doi/10.1109/ICDMW.2009.39&rft_dat=%3Cieee_6IE%3E5360432%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769539027&rft.eisbn_list=0769539025&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5360432&rfr_iscdi=true |