Knowledge Discovery from Text Learning for Ontology Modeling

This paper presents a methodology of knowledge discovery from text learning for ontology modeling. Knowledge written in text is always hard to be extracted by automated process, and most existing ontologies are defined manually. Those ontologies are not comprehensive enough to express most human kno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lim, E.H.Y., Liu, J.N.K., Lee, R.S.T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue
container_start_page 227
container_title
container_volume 7
creator Lim, E.H.Y.
Liu, J.N.K.
Lee, R.S.T.
description This paper presents a methodology of knowledge discovery from text learning for ontology modeling. Knowledge written in text is always hard to be extracted by automated process, and most existing ontologies are defined manually. Those ontologies are not comprehensive enough to express most human knowledge in the real world. Therefore, the most efficient way to identify knowledge is discovering it from rich text. In this paper, we proposed a statistical based method to measure the relation of appearing frequency of word in text. The method identifies and discovers knowledge by automated process. We also defined ontology model - ontology graph, to express knowledge, the graph facilitates machine and human processing. The extracted knowledge in the graph format can aid user to revise and define ontology knowledge more effectively and accurately.
doi_str_mv 10.1109/FSKD.2009.669
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5359987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5359987</ieee_id><sourcerecordid>5359987</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-dfe70eb44eaf1c24dfbd962260a0da2d9acee1a7332221a88ba7ce10936d71ed3</originalsourceid><addsrcrecordid>eNotj01LxDAURQMyoI5dunKTP9CaryZ94EZmnFGmMgu7H9LmpVQ6jaRF7b-3ondz4Vw4cAm55SzjnMH97u2wzQRjkGkNFyQBUzCjIZdG5nxFrn8nYFppdUmScXxnSyQoUMUVeTgM4atH1yLddmMTPjHO1MdwphV-T7REG4duaKkPkR6HKfShnelrcNgv9IasvO1HTP57TardU7V5Tsvj_mXzWKYdsCl1Hg3DWim0njdCOV870EJoZpmzwoFtELk1UgohuC2K2poGl2NSO8PRyTW5-9N2iHj6iN3ZxvmUyxygMPIHsMBI_g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Knowledge Discovery from Text Learning for Ontology Modeling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lim, E.H.Y. ; Liu, J.N.K. ; Lee, R.S.T.</creator><creatorcontrib>Lim, E.H.Y. ; Liu, J.N.K. ; Lee, R.S.T.</creatorcontrib><description>This paper presents a methodology of knowledge discovery from text learning for ontology modeling. Knowledge written in text is always hard to be extracted by automated process, and most existing ontologies are defined manually. Those ontologies are not comprehensive enough to express most human knowledge in the real world. Therefore, the most efficient way to identify knowledge is discovering it from rich text. In this paper, we proposed a statistical based method to measure the relation of appearing frequency of word in text. The method identifies and discovers knowledge by automated process. We also defined ontology model - ontology graph, to express knowledge, the graph facilitates machine and human processing. The extracted knowledge in the graph format can aid user to revise and define ontology knowledge more effectively and accurately.</description><identifier>ISBN: 9780769537351</identifier><identifier>ISBN: 0769537359</identifier><identifier>DOI: 10.1109/FSKD.2009.669</identifier><identifier>LCCN: 2009906464</identifier><language>eng</language><publisher>IEEE</publisher><subject>Content management ; Frequency measurement ; Fuzzy systems ; Humans ; Intelligent systems ; knowledge discovery ; Knowledge representation ; Learning systems ; Machine learning ; Natural languages ; Ontologies ; ontology ; text learning</subject><ispartof>2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, Vol.7, p.227-231</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5359987$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5359987$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lim, E.H.Y.</creatorcontrib><creatorcontrib>Liu, J.N.K.</creatorcontrib><creatorcontrib>Lee, R.S.T.</creatorcontrib><title>Knowledge Discovery from Text Learning for Ontology Modeling</title><title>2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery</title><addtitle>FSKD</addtitle><description>This paper presents a methodology of knowledge discovery from text learning for ontology modeling. Knowledge written in text is always hard to be extracted by automated process, and most existing ontologies are defined manually. Those ontologies are not comprehensive enough to express most human knowledge in the real world. Therefore, the most efficient way to identify knowledge is discovering it from rich text. In this paper, we proposed a statistical based method to measure the relation of appearing frequency of word in text. The method identifies and discovers knowledge by automated process. We also defined ontology model - ontology graph, to express knowledge, the graph facilitates machine and human processing. The extracted knowledge in the graph format can aid user to revise and define ontology knowledge more effectively and accurately.</description><subject>Content management</subject><subject>Frequency measurement</subject><subject>Fuzzy systems</subject><subject>Humans</subject><subject>Intelligent systems</subject><subject>knowledge discovery</subject><subject>Knowledge representation</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Natural languages</subject><subject>Ontologies</subject><subject>ontology</subject><subject>text learning</subject><isbn>9780769537351</isbn><isbn>0769537359</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01LxDAURQMyoI5dunKTP9CaryZ94EZmnFGmMgu7H9LmpVQ6jaRF7b-3ondz4Vw4cAm55SzjnMH97u2wzQRjkGkNFyQBUzCjIZdG5nxFrn8nYFppdUmScXxnSyQoUMUVeTgM4atH1yLddmMTPjHO1MdwphV-T7REG4duaKkPkR6HKfShnelrcNgv9IasvO1HTP57TardU7V5Tsvj_mXzWKYdsCl1Hg3DWim0njdCOV870EJoZpmzwoFtELk1UgohuC2K2poGl2NSO8PRyTW5-9N2iHj6iN3ZxvmUyxygMPIHsMBI_g</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Lim, E.H.Y.</creator><creator>Liu, J.N.K.</creator><creator>Lee, R.S.T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>Knowledge Discovery from Text Learning for Ontology Modeling</title><author>Lim, E.H.Y. ; Liu, J.N.K. ; Lee, R.S.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-dfe70eb44eaf1c24dfbd962260a0da2d9acee1a7332221a88ba7ce10936d71ed3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Content management</topic><topic>Frequency measurement</topic><topic>Fuzzy systems</topic><topic>Humans</topic><topic>Intelligent systems</topic><topic>knowledge discovery</topic><topic>Knowledge representation</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Natural languages</topic><topic>Ontologies</topic><topic>ontology</topic><topic>text learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Lim, E.H.Y.</creatorcontrib><creatorcontrib>Liu, J.N.K.</creatorcontrib><creatorcontrib>Lee, R.S.T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lim, E.H.Y.</au><au>Liu, J.N.K.</au><au>Lee, R.S.T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Knowledge Discovery from Text Learning for Ontology Modeling</atitle><btitle>2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery</btitle><stitle>FSKD</stitle><date>2009-08</date><risdate>2009</risdate><volume>7</volume><spage>227</spage><epage>231</epage><pages>227-231</pages><isbn>9780769537351</isbn><isbn>0769537359</isbn><abstract>This paper presents a methodology of knowledge discovery from text learning for ontology modeling. Knowledge written in text is always hard to be extracted by automated process, and most existing ontologies are defined manually. Those ontologies are not comprehensive enough to express most human knowledge in the real world. Therefore, the most efficient way to identify knowledge is discovering it from rich text. In this paper, we proposed a statistical based method to measure the relation of appearing frequency of word in text. The method identifies and discovers knowledge by automated process. We also defined ontology model - ontology graph, to express knowledge, the graph facilitates machine and human processing. The extracted knowledge in the graph format can aid user to revise and define ontology knowledge more effectively and accurately.</abstract><pub>IEEE</pub><doi>10.1109/FSKD.2009.669</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769537351
ispartof 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, Vol.7, p.227-231
issn
language eng
recordid cdi_ieee_primary_5359987
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Content management
Frequency measurement
Fuzzy systems
Humans
Intelligent systems
knowledge discovery
Knowledge representation
Learning systems
Machine learning
Natural languages
Ontologies
ontology
text learning
title Knowledge Discovery from Text Learning for Ontology Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Knowledge%20Discovery%20from%20Text%20Learning%20for%20Ontology%20Modeling&rft.btitle=2009%20Sixth%20International%20Conference%20on%20Fuzzy%20Systems%20and%20Knowledge%20Discovery&rft.au=Lim,%20E.H.Y.&rft.date=2009-08&rft.volume=7&rft.spage=227&rft.epage=231&rft.pages=227-231&rft.isbn=9780769537351&rft.isbn_list=0769537359&rft_id=info:doi/10.1109/FSKD.2009.669&rft_dat=%3Cieee_6IE%3E5359987%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5359987&rfr_iscdi=true