A Knowledge Discovery Method Based on Error Matrix Equation

This paper begins by defining error matrix to model system's interacting objects whose microscopic state includes not only spatio-temporal variables but also error functions. The error matrix model allows us to define six transformations that have been proposed by error-eliminating theory'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xilin Min, Kaizhong Guo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue
container_start_page 151
container_title
container_volume 2
creator Xilin Min
Kaizhong Guo
description This paper begins by defining error matrix to model system's interacting objects whose microscopic state includes not only spatio-temporal variables but also error functions. The error matrix model allows us to define six transformations that have been proposed by error-eliminating theory's preliminary researches. The main result of this paper is a set of error matrix equations such as T(u) = u 1 . The relative solution is given herein. There are ten equations are defined in this paper. These equations are divided into 2 types and there are 5 kinds of operators in each type. Error matrix is used to express current status u, expectant status u 1 and transformation T. It is u, u 1 , and T that are used to build error matrix equation. The research results provide a new useful potential technique for the analysis of social problems. It allows us to find the method that bad status ¿ u¿ change to good status ¿u 1 ¿ by means of the solution T.
doi_str_mv 10.1109/FSKD.2009.104
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5358765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5358765</ieee_id><sourcerecordid>5358765</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1b1cdaeaa537c74538a4af5aa6e1148c1fa84a230c4636ccf42897f92d15ba303</originalsourceid><addsrcrecordid>eNotjr1OwzAURi2hSkDJyMTiF0iw4-s_MZU2BdRWDHSvbh0HjEoMdoD27SmCbznDkY4-Qi45qzhn9nr-tJhVNWO24gxOSGG1YVpZKbSQfETOf5VlChSckiLnV3acsGDBnJGbCV308Xvn22dPZyG7-OXTga788BJbeovZtzT2tEkpJrrCIYU9bT4-cQixvyCjDnfZF_8ck_W8WU_vy-Xj3cN0siyDZUPJt9y16BGPf5wGKQwCdhJRec7BON6hAawFc6CEcq6D2ljd2brlcouCiTG5-ssG7_3mPYU3TIeNFNJoJcUPnCVHEQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Knowledge Discovery Method Based on Error Matrix Equation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xilin Min ; Kaizhong Guo</creator><creatorcontrib>Xilin Min ; Kaizhong Guo</creatorcontrib><description>This paper begins by defining error matrix to model system's interacting objects whose microscopic state includes not only spatio-temporal variables but also error functions. The error matrix model allows us to define six transformations that have been proposed by error-eliminating theory's preliminary researches. The main result of this paper is a set of error matrix equations such as T(u) = u 1 . The relative solution is given herein. There are ten equations are defined in this paper. These equations are divided into 2 types and there are 5 kinds of operators in each type. Error matrix is used to express current status u, expectant status u 1 and transformation T. It is u, u 1 , and T that are used to build error matrix equation. The research results provide a new useful potential technique for the analysis of social problems. It allows us to find the method that bad status ¿ u¿ change to good status ¿u 1 ¿ by means of the solution T.</description><identifier>ISBN: 9780769537351</identifier><identifier>ISBN: 0769537359</identifier><identifier>DOI: 10.1109/FSKD.2009.104</identifier><identifier>LCCN: 2009906464</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conference management ; Equations ; Error logic transformation ; Error matrix ; Error matrix equation ; Fuzzy systems ; Investments ; Knowledge Discovery Method ; Knowledge management ; Logic ; Mathematical model ; Microscopy ; Technology management</subject><ispartof>2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, Vol.2, p.151-155</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5358765$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5358765$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xilin Min</creatorcontrib><creatorcontrib>Kaizhong Guo</creatorcontrib><title>A Knowledge Discovery Method Based on Error Matrix Equation</title><title>2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery</title><addtitle>FSKD</addtitle><description>This paper begins by defining error matrix to model system's interacting objects whose microscopic state includes not only spatio-temporal variables but also error functions. The error matrix model allows us to define six transformations that have been proposed by error-eliminating theory's preliminary researches. The main result of this paper is a set of error matrix equations such as T(u) = u 1 . The relative solution is given herein. There are ten equations are defined in this paper. These equations are divided into 2 types and there are 5 kinds of operators in each type. Error matrix is used to express current status u, expectant status u 1 and transformation T. It is u, u 1 , and T that are used to build error matrix equation. The research results provide a new useful potential technique for the analysis of social problems. It allows us to find the method that bad status ¿ u¿ change to good status ¿u 1 ¿ by means of the solution T.</description><subject>Conference management</subject><subject>Equations</subject><subject>Error logic transformation</subject><subject>Error matrix</subject><subject>Error matrix equation</subject><subject>Fuzzy systems</subject><subject>Investments</subject><subject>Knowledge Discovery Method</subject><subject>Knowledge management</subject><subject>Logic</subject><subject>Mathematical model</subject><subject>Microscopy</subject><subject>Technology management</subject><isbn>9780769537351</isbn><isbn>0769537359</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjr1OwzAURi2hSkDJyMTiF0iw4-s_MZU2BdRWDHSvbh0HjEoMdoD27SmCbznDkY4-Qi45qzhn9nr-tJhVNWO24gxOSGG1YVpZKbSQfETOf5VlChSckiLnV3acsGDBnJGbCV308Xvn22dPZyG7-OXTga788BJbeovZtzT2tEkpJrrCIYU9bT4-cQixvyCjDnfZF_8ck_W8WU_vy-Xj3cN0siyDZUPJt9y16BGPf5wGKQwCdhJRec7BON6hAawFc6CEcq6D2ljd2brlcouCiTG5-ssG7_3mPYU3TIeNFNJoJcUPnCVHEQ</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Xilin Min</creator><creator>Kaizhong Guo</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>A Knowledge Discovery Method Based on Error Matrix Equation</title><author>Xilin Min ; Kaizhong Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1b1cdaeaa537c74538a4af5aa6e1148c1fa84a230c4636ccf42897f92d15ba303</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Conference management</topic><topic>Equations</topic><topic>Error logic transformation</topic><topic>Error matrix</topic><topic>Error matrix equation</topic><topic>Fuzzy systems</topic><topic>Investments</topic><topic>Knowledge Discovery Method</topic><topic>Knowledge management</topic><topic>Logic</topic><topic>Mathematical model</topic><topic>Microscopy</topic><topic>Technology management</topic><toplevel>online_resources</toplevel><creatorcontrib>Xilin Min</creatorcontrib><creatorcontrib>Kaizhong Guo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xilin Min</au><au>Kaizhong Guo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Knowledge Discovery Method Based on Error Matrix Equation</atitle><btitle>2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery</btitle><stitle>FSKD</stitle><date>2009-08</date><risdate>2009</risdate><volume>2</volume><spage>151</spage><epage>155</epage><pages>151-155</pages><isbn>9780769537351</isbn><isbn>0769537359</isbn><abstract>This paper begins by defining error matrix to model system's interacting objects whose microscopic state includes not only spatio-temporal variables but also error functions. The error matrix model allows us to define six transformations that have been proposed by error-eliminating theory's preliminary researches. The main result of this paper is a set of error matrix equations such as T(u) = u 1 . The relative solution is given herein. There are ten equations are defined in this paper. These equations are divided into 2 types and there are 5 kinds of operators in each type. Error matrix is used to express current status u, expectant status u 1 and transformation T. It is u, u 1 , and T that are used to build error matrix equation. The research results provide a new useful potential technique for the analysis of social problems. It allows us to find the method that bad status ¿ u¿ change to good status ¿u 1 ¿ by means of the solution T.</abstract><pub>IEEE</pub><doi>10.1109/FSKD.2009.104</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769537351
ispartof 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, Vol.2, p.151-155
issn
language eng
recordid cdi_ieee_primary_5358765
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Conference management
Equations
Error logic transformation
Error matrix
Error matrix equation
Fuzzy systems
Investments
Knowledge Discovery Method
Knowledge management
Logic
Mathematical model
Microscopy
Technology management
title A Knowledge Discovery Method Based on Error Matrix Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Knowledge%20Discovery%20Method%20Based%20on%20Error%20Matrix%20Equation&rft.btitle=2009%20Sixth%20International%20Conference%20on%20Fuzzy%20Systems%20and%20Knowledge%20Discovery&rft.au=Xilin%20Min&rft.date=2009-08&rft.volume=2&rft.spage=151&rft.epage=155&rft.pages=151-155&rft.isbn=9780769537351&rft.isbn_list=0769537359&rft_id=info:doi/10.1109/FSKD.2009.104&rft_dat=%3Cieee_6IE%3E5358765%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5358765&rfr_iscdi=true