A Knowledge Discovery Method Based on Error Matrix Equation
This paper begins by defining error matrix to model system's interacting objects whose microscopic state includes not only spatio-temporal variables but also error functions. The error matrix model allows us to define six transformations that have been proposed by error-eliminating theory'...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | |
container_start_page | 151 |
container_title | |
container_volume | 2 |
creator | Xilin Min Kaizhong Guo |
description | This paper begins by defining error matrix to model system's interacting objects whose microscopic state includes not only spatio-temporal variables but also error functions. The error matrix model allows us to define six transformations that have been proposed by error-eliminating theory's preliminary researches. The main result of this paper is a set of error matrix equations such as T(u) = u 1 . The relative solution is given herein. There are ten equations are defined in this paper. These equations are divided into 2 types and there are 5 kinds of operators in each type. Error matrix is used to express current status u, expectant status u 1 and transformation T. It is u, u 1 , and T that are used to build error matrix equation. The research results provide a new useful potential technique for the analysis of social problems. It allows us to find the method that bad status ¿ u¿ change to good status ¿u 1 ¿ by means of the solution T. |
doi_str_mv | 10.1109/FSKD.2009.104 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5358765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5358765</ieee_id><sourcerecordid>5358765</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1b1cdaeaa537c74538a4af5aa6e1148c1fa84a230c4636ccf42897f92d15ba303</originalsourceid><addsrcrecordid>eNotjr1OwzAURi2hSkDJyMTiF0iw4-s_MZU2BdRWDHSvbh0HjEoMdoD27SmCbznDkY4-Qi45qzhn9nr-tJhVNWO24gxOSGG1YVpZKbSQfETOf5VlChSckiLnV3acsGDBnJGbCV308Xvn22dPZyG7-OXTga788BJbeovZtzT2tEkpJrrCIYU9bT4-cQixvyCjDnfZF_8ck_W8WU_vy-Xj3cN0siyDZUPJt9y16BGPf5wGKQwCdhJRec7BON6hAawFc6CEcq6D2ljd2brlcouCiTG5-ssG7_3mPYU3TIeNFNJoJcUPnCVHEQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Knowledge Discovery Method Based on Error Matrix Equation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xilin Min ; Kaizhong Guo</creator><creatorcontrib>Xilin Min ; Kaizhong Guo</creatorcontrib><description>This paper begins by defining error matrix to model system's interacting objects whose microscopic state includes not only spatio-temporal variables but also error functions. The error matrix model allows us to define six transformations that have been proposed by error-eliminating theory's preliminary researches. The main result of this paper is a set of error matrix equations such as T(u) = u 1 . The relative solution is given herein. There are ten equations are defined in this paper. These equations are divided into 2 types and there are 5 kinds of operators in each type. Error matrix is used to express current status u, expectant status u 1 and transformation T. It is u, u 1 , and T that are used to build error matrix equation. The research results provide a new useful potential technique for the analysis of social problems. It allows us to find the method that bad status ¿ u¿ change to good status ¿u 1 ¿ by means of the solution T.</description><identifier>ISBN: 9780769537351</identifier><identifier>ISBN: 0769537359</identifier><identifier>DOI: 10.1109/FSKD.2009.104</identifier><identifier>LCCN: 2009906464</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conference management ; Equations ; Error logic transformation ; Error matrix ; Error matrix equation ; Fuzzy systems ; Investments ; Knowledge Discovery Method ; Knowledge management ; Logic ; Mathematical model ; Microscopy ; Technology management</subject><ispartof>2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, Vol.2, p.151-155</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5358765$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5358765$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xilin Min</creatorcontrib><creatorcontrib>Kaizhong Guo</creatorcontrib><title>A Knowledge Discovery Method Based on Error Matrix Equation</title><title>2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery</title><addtitle>FSKD</addtitle><description>This paper begins by defining error matrix to model system's interacting objects whose microscopic state includes not only spatio-temporal variables but also error functions. The error matrix model allows us to define six transformations that have been proposed by error-eliminating theory's preliminary researches. The main result of this paper is a set of error matrix equations such as T(u) = u 1 . The relative solution is given herein. There are ten equations are defined in this paper. These equations are divided into 2 types and there are 5 kinds of operators in each type. Error matrix is used to express current status u, expectant status u 1 and transformation T. It is u, u 1 , and T that are used to build error matrix equation. The research results provide a new useful potential technique for the analysis of social problems. It allows us to find the method that bad status ¿ u¿ change to good status ¿u 1 ¿ by means of the solution T.</description><subject>Conference management</subject><subject>Equations</subject><subject>Error logic transformation</subject><subject>Error matrix</subject><subject>Error matrix equation</subject><subject>Fuzzy systems</subject><subject>Investments</subject><subject>Knowledge Discovery Method</subject><subject>Knowledge management</subject><subject>Logic</subject><subject>Mathematical model</subject><subject>Microscopy</subject><subject>Technology management</subject><isbn>9780769537351</isbn><isbn>0769537359</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjr1OwzAURi2hSkDJyMTiF0iw4-s_MZU2BdRWDHSvbh0HjEoMdoD27SmCbznDkY4-Qi45qzhn9nr-tJhVNWO24gxOSGG1YVpZKbSQfETOf5VlChSckiLnV3acsGDBnJGbCV308Xvn22dPZyG7-OXTga788BJbeovZtzT2tEkpJrrCIYU9bT4-cQixvyCjDnfZF_8ck_W8WU_vy-Xj3cN0siyDZUPJt9y16BGPf5wGKQwCdhJRec7BON6hAawFc6CEcq6D2ljd2brlcouCiTG5-ssG7_3mPYU3TIeNFNJoJcUPnCVHEQ</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Xilin Min</creator><creator>Kaizhong Guo</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>A Knowledge Discovery Method Based on Error Matrix Equation</title><author>Xilin Min ; Kaizhong Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1b1cdaeaa537c74538a4af5aa6e1148c1fa84a230c4636ccf42897f92d15ba303</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Conference management</topic><topic>Equations</topic><topic>Error logic transformation</topic><topic>Error matrix</topic><topic>Error matrix equation</topic><topic>Fuzzy systems</topic><topic>Investments</topic><topic>Knowledge Discovery Method</topic><topic>Knowledge management</topic><topic>Logic</topic><topic>Mathematical model</topic><topic>Microscopy</topic><topic>Technology management</topic><toplevel>online_resources</toplevel><creatorcontrib>Xilin Min</creatorcontrib><creatorcontrib>Kaizhong Guo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xilin Min</au><au>Kaizhong Guo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Knowledge Discovery Method Based on Error Matrix Equation</atitle><btitle>2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery</btitle><stitle>FSKD</stitle><date>2009-08</date><risdate>2009</risdate><volume>2</volume><spage>151</spage><epage>155</epage><pages>151-155</pages><isbn>9780769537351</isbn><isbn>0769537359</isbn><abstract>This paper begins by defining error matrix to model system's interacting objects whose microscopic state includes not only spatio-temporal variables but also error functions. The error matrix model allows us to define six transformations that have been proposed by error-eliminating theory's preliminary researches. The main result of this paper is a set of error matrix equations such as T(u) = u 1 . The relative solution is given herein. There are ten equations are defined in this paper. These equations are divided into 2 types and there are 5 kinds of operators in each type. Error matrix is used to express current status u, expectant status u 1 and transformation T. It is u, u 1 , and T that are used to build error matrix equation. The research results provide a new useful potential technique for the analysis of social problems. It allows us to find the method that bad status ¿ u¿ change to good status ¿u 1 ¿ by means of the solution T.</abstract><pub>IEEE</pub><doi>10.1109/FSKD.2009.104</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769537351 |
ispartof | 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, Vol.2, p.151-155 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5358765 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Conference management Equations Error logic transformation Error matrix Error matrix equation Fuzzy systems Investments Knowledge Discovery Method Knowledge management Logic Mathematical model Microscopy Technology management |
title | A Knowledge Discovery Method Based on Error Matrix Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Knowledge%20Discovery%20Method%20Based%20on%20Error%20Matrix%20Equation&rft.btitle=2009%20Sixth%20International%20Conference%20on%20Fuzzy%20Systems%20and%20Knowledge%20Discovery&rft.au=Xilin%20Min&rft.date=2009-08&rft.volume=2&rft.spage=151&rft.epage=155&rft.pages=151-155&rft.isbn=9780769537351&rft.isbn_list=0769537359&rft_id=info:doi/10.1109/FSKD.2009.104&rft_dat=%3Cieee_6IE%3E5358765%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5358765&rfr_iscdi=true |