Chinese Text Automatic Summarization Based on Affinity Propagation Cluster

Automatic summarization can help us accurately and efficiently obtain the information needed from the magnanimity information and has attracted more attention. In this paper, a new method for Chinese text summarization using the algorithm of affinity propagation cluster (APC) is presented. It is not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Changwei Zhao, Qinke Peng, Suhuan Sun
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 429
container_issue
container_start_page 425
container_title
container_volume 1
creator Changwei Zhao
Qinke Peng
Suhuan Sun
description Automatic summarization can help us accurately and efficiently obtain the information needed from the magnanimity information and has attracted more attention. In this paper, a new method for Chinese text summarization using the algorithm of affinity propagation cluster (APC) is presented. It is not necessary to set the number of clusters and the initial representative exemplars in APC, so it can avoid the problems of local-optimal and instable clustering results caused by randomly selecting initial representative exemplars. And the algorithm has high computing efficiency. The results of the experiments show us that Chinese text automatic summarization based on APC has higher accuracy than that of other algorithms. APC is a suitable method for automatic text summarization.
doi_str_mv 10.1109/FSKD.2009.302
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5358556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5358556</ieee_id><sourcerecordid>5358556</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b918cfa6d2045179f31f7859d98b7b83daf40fde2de73dd2a4fa0371ffbfb6393</originalsourceid><addsrcrecordid>eNotjk1LxDAYhAOyoK49evKSP9CaNJ_vsVbXrwWF7X1JN4lGtu3SpOD6662sc5kZHhgGoWtKCkoJ3K42r_dFSQgUjJRnKAOliZIgmGKCLtDlHwIiueTnKIvxi8xiwIHrC_RSf4beRYcb951wNaWhMyns8GbqOjOGn7kMPb4z0Vk8h8r70Id0xO_jcDAfJ1rvp5jceIUW3uyjy_59iZrVQ1M_5eu3x-e6WucBSMpboHrnjbQl4YIq8Ix6pQVY0K1qNbPGc-KtK61TzNrScG8IU9T71reSAVuim9NscM5tD2OYfx63ggkthGS_UYVOCw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Chinese Text Automatic Summarization Based on Affinity Propagation Cluster</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Changwei Zhao ; Qinke Peng ; Suhuan Sun</creator><creatorcontrib>Changwei Zhao ; Qinke Peng ; Suhuan Sun</creatorcontrib><description>Automatic summarization can help us accurately and efficiently obtain the information needed from the magnanimity information and has attracted more attention. In this paper, a new method for Chinese text summarization using the algorithm of affinity propagation cluster (APC) is presented. It is not necessary to set the number of clusters and the initial representative exemplars in APC, so it can avoid the problems of local-optimal and instable clustering results caused by randomly selecting initial representative exemplars. And the algorithm has high computing efficiency. The results of the experiments show us that Chinese text automatic summarization based on APC has higher accuracy than that of other algorithms. APC is a suitable method for automatic text summarization.</description><identifier>ISBN: 9780769537351</identifier><identifier>ISBN: 0769537359</identifier><identifier>DOI: 10.1109/FSKD.2009.302</identifier><identifier>LCCN: 2009906464</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Costs ; Fuzzy systems ; Knowledge engineering ; Laboratories ; Learning systems ; Machine learning algorithms ; Manufacturing systems ; Sun ; Systems engineering and theory</subject><ispartof>2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, Vol.1, p.425-429</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5358556$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5358556$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Changwei Zhao</creatorcontrib><creatorcontrib>Qinke Peng</creatorcontrib><creatorcontrib>Suhuan Sun</creatorcontrib><title>Chinese Text Automatic Summarization Based on Affinity Propagation Cluster</title><title>2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery</title><addtitle>FSKD</addtitle><description>Automatic summarization can help us accurately and efficiently obtain the information needed from the magnanimity information and has attracted more attention. In this paper, a new method for Chinese text summarization using the algorithm of affinity propagation cluster (APC) is presented. It is not necessary to set the number of clusters and the initial representative exemplars in APC, so it can avoid the problems of local-optimal and instable clustering results caused by randomly selecting initial representative exemplars. And the algorithm has high computing efficiency. The results of the experiments show us that Chinese text automatic summarization based on APC has higher accuracy than that of other algorithms. APC is a suitable method for automatic text summarization.</description><subject>Clustering algorithms</subject><subject>Costs</subject><subject>Fuzzy systems</subject><subject>Knowledge engineering</subject><subject>Laboratories</subject><subject>Learning systems</subject><subject>Machine learning algorithms</subject><subject>Manufacturing systems</subject><subject>Sun</subject><subject>Systems engineering and theory</subject><isbn>9780769537351</isbn><isbn>0769537359</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjk1LxDAYhAOyoK49evKSP9CaNJ_vsVbXrwWF7X1JN4lGtu3SpOD6662sc5kZHhgGoWtKCkoJ3K42r_dFSQgUjJRnKAOliZIgmGKCLtDlHwIiueTnKIvxi8xiwIHrC_RSf4beRYcb951wNaWhMyns8GbqOjOGn7kMPb4z0Vk8h8r70Id0xO_jcDAfJ1rvp5jceIUW3uyjy_59iZrVQ1M_5eu3x-e6WucBSMpboHrnjbQl4YIq8Ix6pQVY0K1qNbPGc-KtK61TzNrScG8IU9T71reSAVuim9NscM5tD2OYfx63ggkthGS_UYVOCw</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Changwei Zhao</creator><creator>Qinke Peng</creator><creator>Suhuan Sun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>Chinese Text Automatic Summarization Based on Affinity Propagation Cluster</title><author>Changwei Zhao ; Qinke Peng ; Suhuan Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b918cfa6d2045179f31f7859d98b7b83daf40fde2de73dd2a4fa0371ffbfb6393</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clustering algorithms</topic><topic>Costs</topic><topic>Fuzzy systems</topic><topic>Knowledge engineering</topic><topic>Laboratories</topic><topic>Learning systems</topic><topic>Machine learning algorithms</topic><topic>Manufacturing systems</topic><topic>Sun</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Changwei Zhao</creatorcontrib><creatorcontrib>Qinke Peng</creatorcontrib><creatorcontrib>Suhuan Sun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Changwei Zhao</au><au>Qinke Peng</au><au>Suhuan Sun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Chinese Text Automatic Summarization Based on Affinity Propagation Cluster</atitle><btitle>2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery</btitle><stitle>FSKD</stitle><date>2009-08</date><risdate>2009</risdate><volume>1</volume><spage>425</spage><epage>429</epage><pages>425-429</pages><isbn>9780769537351</isbn><isbn>0769537359</isbn><abstract>Automatic summarization can help us accurately and efficiently obtain the information needed from the magnanimity information and has attracted more attention. In this paper, a new method for Chinese text summarization using the algorithm of affinity propagation cluster (APC) is presented. It is not necessary to set the number of clusters and the initial representative exemplars in APC, so it can avoid the problems of local-optimal and instable clustering results caused by randomly selecting initial representative exemplars. And the algorithm has high computing efficiency. The results of the experiments show us that Chinese text automatic summarization based on APC has higher accuracy than that of other algorithms. APC is a suitable method for automatic text summarization.</abstract><pub>IEEE</pub><doi>10.1109/FSKD.2009.302</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769537351
ispartof 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, Vol.1, p.425-429
issn
language eng
recordid cdi_ieee_primary_5358556
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Costs
Fuzzy systems
Knowledge engineering
Laboratories
Learning systems
Machine learning algorithms
Manufacturing systems
Sun
Systems engineering and theory
title Chinese Text Automatic Summarization Based on Affinity Propagation Cluster
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Chinese%20Text%20Automatic%20Summarization%20Based%20on%20Affinity%20Propagation%20Cluster&rft.btitle=2009%20Sixth%20International%20Conference%20on%20Fuzzy%20Systems%20and%20Knowledge%20Discovery&rft.au=Changwei%20Zhao&rft.date=2009-08&rft.volume=1&rft.spage=425&rft.epage=429&rft.pages=425-429&rft.isbn=9780769537351&rft.isbn_list=0769537359&rft_id=info:doi/10.1109/FSKD.2009.302&rft_dat=%3Cieee_6IE%3E5358556%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5358556&rfr_iscdi=true