Implementation of a CNN based object counting algorithm on bi-i cellular vision system

Object counting has been used in many areas such as medical and industrial applications. It is a challenging problem to count the target objects in high speed. It is useful to implement image processing applications using the high capability computational power offered by Cellular Neural Network typ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sevgen, S., Karabiber, F., Yucel, E., Arik, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page II-397
container_issue
container_start_page II-394
container_title
container_volume
creator Sevgen, S.
Karabiber, F.
Yucel, E.
Arik, S.
description Object counting has been used in many areas such as medical and industrial applications. It is a challenging problem to count the target objects in high speed. It is useful to implement image processing applications using the high capability computational power offered by Cellular Neural Network type analog processor named as ACE16k. In this paper, we implement an efficient object counting algorithm working on ACE16k chip. Our results have proved that the proposed algorithm can count objects on a given image rapidly and accurately.
doi_str_mv 10.1109/ELECO.2009.5355280
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5355280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5355280</ieee_id><sourcerecordid>5355280</sourcerecordid><originalsourceid>FETCH-ieee_primary_53552803</originalsourceid><addsrcrecordid>eNp9jsGqwjAURCMi-NT-gG7uD1iTmmiyLhUF0Y2IO0nrVSNJI0184N-r4NrZzOIMhyFkyGjKGFWTYl3k2zSjVKViKkQmaYskai6V4lwqyaRskx7jGeeC0dmhS5IQbvQdLrK5on9kv3J3iw7rqKPxNfgzaMg3Gyh1wBP48oZVhMo_6mjqC2h78Y2JVwfvbWnGBiq09mF1A_8mfAThGSK6AemctQ2YfLtPRotily_HBhGP98Y43TyP38vT3_QFMoJD2w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Implementation of a CNN based object counting algorithm on bi-i cellular vision system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sevgen, S. ; Karabiber, F. ; Yucel, E. ; Arik, S.</creator><creatorcontrib>Sevgen, S. ; Karabiber, F. ; Yucel, E. ; Arik, S.</creatorcontrib><description>Object counting has been used in many areas such as medical and industrial applications. It is a challenging problem to count the target objects in high speed. It is useful to implement image processing applications using the high capability computational power offered by Cellular Neural Network type analog processor named as ACE16k. In this paper, we implement an efficient object counting algorithm working on ACE16k chip. Our results have proved that the proposed algorithm can count objects on a given image rapidly and accurately.</description><identifier>ISBN: 142445106X</identifier><identifier>ISBN: 9781424451067</identifier><identifier>EISBN: 9789944898188</identifier><identifier>EISBN: 994489818X</identifier><identifier>DOI: 10.1109/ELECO.2009.5355280</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Biomedical engineering ; Cellular neural networks ; Computer vision ; Humans ; Image processing ; Machine vision ; Power engineering and energy ; Power engineering computing ; Signal processing algorithms</subject><ispartof>2009 International Conference on Electrical and Electronics Engineering - ELECO 2009, 2009, p.II-394-II-397</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5355280$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5355280$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sevgen, S.</creatorcontrib><creatorcontrib>Karabiber, F.</creatorcontrib><creatorcontrib>Yucel, E.</creatorcontrib><creatorcontrib>Arik, S.</creatorcontrib><title>Implementation of a CNN based object counting algorithm on bi-i cellular vision system</title><title>2009 International Conference on Electrical and Electronics Engineering - ELECO 2009</title><addtitle>ELECO</addtitle><description>Object counting has been used in many areas such as medical and industrial applications. It is a challenging problem to count the target objects in high speed. It is useful to implement image processing applications using the high capability computational power offered by Cellular Neural Network type analog processor named as ACE16k. In this paper, we implement an efficient object counting algorithm working on ACE16k chip. Our results have proved that the proposed algorithm can count objects on a given image rapidly and accurately.</description><subject>Application software</subject><subject>Biomedical engineering</subject><subject>Cellular neural networks</subject><subject>Computer vision</subject><subject>Humans</subject><subject>Image processing</subject><subject>Machine vision</subject><subject>Power engineering and energy</subject><subject>Power engineering computing</subject><subject>Signal processing algorithms</subject><isbn>142445106X</isbn><isbn>9781424451067</isbn><isbn>9789944898188</isbn><isbn>994489818X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jsGqwjAURCMi-NT-gG7uD1iTmmiyLhUF0Y2IO0nrVSNJI0184N-r4NrZzOIMhyFkyGjKGFWTYl3k2zSjVKViKkQmaYskai6V4lwqyaRskx7jGeeC0dmhS5IQbvQdLrK5on9kv3J3iw7rqKPxNfgzaMg3Gyh1wBP48oZVhMo_6mjqC2h78Y2JVwfvbWnGBiq09mF1A_8mfAThGSK6AemctQ2YfLtPRotily_HBhGP98Y43TyP38vT3_QFMoJD2w</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Sevgen, S.</creator><creator>Karabiber, F.</creator><creator>Yucel, E.</creator><creator>Arik, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200911</creationdate><title>Implementation of a CNN based object counting algorithm on bi-i cellular vision system</title><author>Sevgen, S. ; Karabiber, F. ; Yucel, E. ; Arik, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_53552803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Application software</topic><topic>Biomedical engineering</topic><topic>Cellular neural networks</topic><topic>Computer vision</topic><topic>Humans</topic><topic>Image processing</topic><topic>Machine vision</topic><topic>Power engineering and energy</topic><topic>Power engineering computing</topic><topic>Signal processing algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Sevgen, S.</creatorcontrib><creatorcontrib>Karabiber, F.</creatorcontrib><creatorcontrib>Yucel, E.</creatorcontrib><creatorcontrib>Arik, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sevgen, S.</au><au>Karabiber, F.</au><au>Yucel, E.</au><au>Arik, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Implementation of a CNN based object counting algorithm on bi-i cellular vision system</atitle><btitle>2009 International Conference on Electrical and Electronics Engineering - ELECO 2009</btitle><stitle>ELECO</stitle><date>2009-11</date><risdate>2009</risdate><spage>II-394</spage><epage>II-397</epage><pages>II-394-II-397</pages><isbn>142445106X</isbn><isbn>9781424451067</isbn><eisbn>9789944898188</eisbn><eisbn>994489818X</eisbn><abstract>Object counting has been used in many areas such as medical and industrial applications. It is a challenging problem to count the target objects in high speed. It is useful to implement image processing applications using the high capability computational power offered by Cellular Neural Network type analog processor named as ACE16k. In this paper, we implement an efficient object counting algorithm working on ACE16k chip. Our results have proved that the proposed algorithm can count objects on a given image rapidly and accurately.</abstract><pub>IEEE</pub><doi>10.1109/ELECO.2009.5355280</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 142445106X
ispartof 2009 International Conference on Electrical and Electronics Engineering - ELECO 2009, 2009, p.II-394-II-397
issn
language eng
recordid cdi_ieee_primary_5355280
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Biomedical engineering
Cellular neural networks
Computer vision
Humans
Image processing
Machine vision
Power engineering and energy
Power engineering computing
Signal processing algorithms
title Implementation of a CNN based object counting algorithm on bi-i cellular vision system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Implementation%20of%20a%20CNN%20based%20object%20counting%20algorithm%20on%20bi-i%20cellular%20vision%20system&rft.btitle=2009%20International%20Conference%20on%20Electrical%20and%20Electronics%20Engineering%20-%20ELECO%202009&rft.au=Sevgen,%20S.&rft.date=2009-11&rft.spage=II-394&rft.epage=II-397&rft.pages=II-394-II-397&rft.isbn=142445106X&rft.isbn_list=9781424451067&rft_id=info:doi/10.1109/ELECO.2009.5355280&rft_dat=%3Cieee_6IE%3E5355280%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9789944898188&rft.eisbn_list=994489818X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5355280&rfr_iscdi=true