Biologically inspired control for robotic arm using neural oscillator network

It is known that biologically inspired neural systems could exhibit natural dynamics efficiently and robustly for motion control, especially for rhythmic motion tasks. In addition, humans or animals exhibit natural adaptive motions without considering their kinematic configurations against unexpecte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Woosung Yang, Ji-Hun Bae, Yonghwan Oh, Nak Young Chong, Bum Jae You
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue
container_start_page 135
container_title
container_volume
creator Woosung Yang
Ji-Hun Bae
Yonghwan Oh
Nak Young Chong
Bum Jae You
description It is known that biologically inspired neural systems could exhibit natural dynamics efficiently and robustly for motion control, especially for rhythmic motion tasks. In addition, humans or animals exhibit natural adaptive motions without considering their kinematic configurations against unexpected disturbances or environment changes. In this paper, we focus on rhythmic arm motions that can be achieved by using a controller based on neural oscillators and virtual force. In comparison with conventional researches, this work treats neither trajectories planning nor inverse kinematics. Instead of those, a few desired points in task-space and a control method with Jacobian transpose and joint velocity damping are merely adopted. In addition, if the joints of robotic arms are coupled to neural oscillators, they may be capable of achieving biologically inspired motions corresponding to environmental changes. To verify the proposed control scheme, we perform some simulations to trace a desired motion and show the potential features related with self-adaptation that enables a three-link planar arm to make adaptive changes from the given motion to a compliant motion. Specifically, we investigate that human-like movements and motion repeatability are satisfied under kinematic redundancy of joints.
doi_str_mv 10.1109/IROS.2009.5354357
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5354357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5354357</ieee_id><sourcerecordid>5354357</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-67e6a74e654256bbd5fc6b358a0a3b5639a4284998b9af5996acf63a4ab8c9293</originalsourceid><addsrcrecordid>eNpVkMtKAzEYheOlYK3zAOImLzA1k9vkX2qpWqgUvKzLnzRToumkZKZI396KRfBszuI7fItDyHXFxlXF4Hb2sngdc8ZgrISSQtUnpIDaVJJLKQyT8pQMeaVEyYzWZ_-YqM__mDIDcvmjAca4YRek6LoPdohU3HA9JM_3IcW0Dg5j3NPQdtuQ_Yq61PY5RdqkTHOyqQ-OYt7QXRfaNW39LmOkqXMhRuwPm9b3Xyl_XpFBg7HzxbFH5P1h-jZ5KueLx9nkbl4GXkFf6tprrKXXSnKlrV2pxmkrlEGGwiotACU3EsBYwEYBaHSNFijRGgccxIjc_HqD9365zWGDeb88PiW-AdZaVoY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Biologically inspired control for robotic arm using neural oscillator network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Woosung Yang ; Ji-Hun Bae ; Yonghwan Oh ; Nak Young Chong ; Bum Jae You</creator><creatorcontrib>Woosung Yang ; Ji-Hun Bae ; Yonghwan Oh ; Nak Young Chong ; Bum Jae You</creatorcontrib><description>It is known that biologically inspired neural systems could exhibit natural dynamics efficiently and robustly for motion control, especially for rhythmic motion tasks. In addition, humans or animals exhibit natural adaptive motions without considering their kinematic configurations against unexpected disturbances or environment changes. In this paper, we focus on rhythmic arm motions that can be achieved by using a controller based on neural oscillators and virtual force. In comparison with conventional researches, this work treats neither trajectories planning nor inverse kinematics. Instead of those, a few desired points in task-space and a control method with Jacobian transpose and joint velocity damping are merely adopted. In addition, if the joints of robotic arms are coupled to neural oscillators, they may be capable of achieving biologically inspired motions corresponding to environmental changes. To verify the proposed control scheme, we perform some simulations to trace a desired motion and show the potential features related with self-adaptation that enables a three-link planar arm to make adaptive changes from the given motion to a compliant motion. Specifically, we investigate that human-like movements and motion repeatability are satisfied under kinematic redundancy of joints.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424438037</identifier><identifier>ISBN: 1424438039</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424438044</identifier><identifier>EISBN: 1424438047</identifier><identifier>DOI: 10.1109/IROS.2009.5354357</identifier><identifier>LCCN: 2009900280</identifier><language>eng</language><publisher>IEEE</publisher><subject>Animals ; Biological control systems ; Force control ; Humans ; Kinematics ; Motion control ; Oscillators ; Robot control ; Robust control ; Trajectory</subject><ispartof>2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, p.135-141</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5354357$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5354357$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Woosung Yang</creatorcontrib><creatorcontrib>Ji-Hun Bae</creatorcontrib><creatorcontrib>Yonghwan Oh</creatorcontrib><creatorcontrib>Nak Young Chong</creatorcontrib><creatorcontrib>Bum Jae You</creatorcontrib><title>Biologically inspired control for robotic arm using neural oscillator network</title><title>2009 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>It is known that biologically inspired neural systems could exhibit natural dynamics efficiently and robustly for motion control, especially for rhythmic motion tasks. In addition, humans or animals exhibit natural adaptive motions without considering their kinematic configurations against unexpected disturbances or environment changes. In this paper, we focus on rhythmic arm motions that can be achieved by using a controller based on neural oscillators and virtual force. In comparison with conventional researches, this work treats neither trajectories planning nor inverse kinematics. Instead of those, a few desired points in task-space and a control method with Jacobian transpose and joint velocity damping are merely adopted. In addition, if the joints of robotic arms are coupled to neural oscillators, they may be capable of achieving biologically inspired motions corresponding to environmental changes. To verify the proposed control scheme, we perform some simulations to trace a desired motion and show the potential features related with self-adaptation that enables a three-link planar arm to make adaptive changes from the given motion to a compliant motion. Specifically, we investigate that human-like movements and motion repeatability are satisfied under kinematic redundancy of joints.</description><subject>Animals</subject><subject>Biological control systems</subject><subject>Force control</subject><subject>Humans</subject><subject>Kinematics</subject><subject>Motion control</subject><subject>Oscillators</subject><subject>Robot control</subject><subject>Robust control</subject><subject>Trajectory</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424438037</isbn><isbn>1424438039</isbn><isbn>9781424438044</isbn><isbn>1424438047</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKAzEYheOlYK3zAOImLzA1k9vkX2qpWqgUvKzLnzRToumkZKZI396KRfBszuI7fItDyHXFxlXF4Hb2sngdc8ZgrISSQtUnpIDaVJJLKQyT8pQMeaVEyYzWZ_-YqM__mDIDcvmjAca4YRek6LoPdohU3HA9JM_3IcW0Dg5j3NPQdtuQ_Yq61PY5RdqkTHOyqQ-OYt7QXRfaNW39LmOkqXMhRuwPm9b3Xyl_XpFBg7HzxbFH5P1h-jZ5KueLx9nkbl4GXkFf6tprrKXXSnKlrV2pxmkrlEGGwiotACU3EsBYwEYBaHSNFijRGgccxIjc_HqD9365zWGDeb88PiW-AdZaVoY</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Woosung Yang</creator><creator>Ji-Hun Bae</creator><creator>Yonghwan Oh</creator><creator>Nak Young Chong</creator><creator>Bum Jae You</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200910</creationdate><title>Biologically inspired control for robotic arm using neural oscillator network</title><author>Woosung Yang ; Ji-Hun Bae ; Yonghwan Oh ; Nak Young Chong ; Bum Jae You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-67e6a74e654256bbd5fc6b358a0a3b5639a4284998b9af5996acf63a4ab8c9293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biological control systems</topic><topic>Force control</topic><topic>Humans</topic><topic>Kinematics</topic><topic>Motion control</topic><topic>Oscillators</topic><topic>Robot control</topic><topic>Robust control</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Woosung Yang</creatorcontrib><creatorcontrib>Ji-Hun Bae</creatorcontrib><creatorcontrib>Yonghwan Oh</creatorcontrib><creatorcontrib>Nak Young Chong</creatorcontrib><creatorcontrib>Bum Jae You</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Woosung Yang</au><au>Ji-Hun Bae</au><au>Yonghwan Oh</au><au>Nak Young Chong</au><au>Bum Jae You</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Biologically inspired control for robotic arm using neural oscillator network</atitle><btitle>2009 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2009-10</date><risdate>2009</risdate><spage>135</spage><epage>141</epage><pages>135-141</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424438037</isbn><isbn>1424438039</isbn><eisbn>9781424438044</eisbn><eisbn>1424438047</eisbn><abstract>It is known that biologically inspired neural systems could exhibit natural dynamics efficiently and robustly for motion control, especially for rhythmic motion tasks. In addition, humans or animals exhibit natural adaptive motions without considering their kinematic configurations against unexpected disturbances or environment changes. In this paper, we focus on rhythmic arm motions that can be achieved by using a controller based on neural oscillators and virtual force. In comparison with conventional researches, this work treats neither trajectories planning nor inverse kinematics. Instead of those, a few desired points in task-space and a control method with Jacobian transpose and joint velocity damping are merely adopted. In addition, if the joints of robotic arms are coupled to neural oscillators, they may be capable of achieving biologically inspired motions corresponding to environmental changes. To verify the proposed control scheme, we perform some simulations to trace a desired motion and show the potential features related with self-adaptation that enables a three-link planar arm to make adaptive changes from the given motion to a compliant motion. Specifically, we investigate that human-like movements and motion repeatability are satisfied under kinematic redundancy of joints.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2009.5354357</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, p.135-141
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_5354357
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Animals
Biological control systems
Force control
Humans
Kinematics
Motion control
Oscillators
Robot control
Robust control
Trajectory
title Biologically inspired control for robotic arm using neural oscillator network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Biologically%20inspired%20control%20for%20robotic%20arm%20using%20neural%20oscillator%20network&rft.btitle=2009%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Woosung%20Yang&rft.date=2009-10&rft.spage=135&rft.epage=141&rft.pages=135-141&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424438037&rft.isbn_list=1424438039&rft_id=info:doi/10.1109/IROS.2009.5354357&rft_dat=%3Cieee_6IE%3E5354357%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424438044&rft.eisbn_list=1424438047&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5354357&rfr_iscdi=true