Biologically inspired control for robotic arm using neural oscillator network
It is known that biologically inspired neural systems could exhibit natural dynamics efficiently and robustly for motion control, especially for rhythmic motion tasks. In addition, humans or animals exhibit natural adaptive motions without considering their kinematic configurations against unexpecte...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141 |
---|---|
container_issue | |
container_start_page | 135 |
container_title | |
container_volume | |
creator | Woosung Yang Ji-Hun Bae Yonghwan Oh Nak Young Chong Bum Jae You |
description | It is known that biologically inspired neural systems could exhibit natural dynamics efficiently and robustly for motion control, especially for rhythmic motion tasks. In addition, humans or animals exhibit natural adaptive motions without considering their kinematic configurations against unexpected disturbances or environment changes. In this paper, we focus on rhythmic arm motions that can be achieved by using a controller based on neural oscillators and virtual force. In comparison with conventional researches, this work treats neither trajectories planning nor inverse kinematics. Instead of those, a few desired points in task-space and a control method with Jacobian transpose and joint velocity damping are merely adopted. In addition, if the joints of robotic arms are coupled to neural oscillators, they may be capable of achieving biologically inspired motions corresponding to environmental changes. To verify the proposed control scheme, we perform some simulations to trace a desired motion and show the potential features related with self-adaptation that enables a three-link planar arm to make adaptive changes from the given motion to a compliant motion. Specifically, we investigate that human-like movements and motion repeatability are satisfied under kinematic redundancy of joints. |
doi_str_mv | 10.1109/IROS.2009.5354357 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5354357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5354357</ieee_id><sourcerecordid>5354357</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-67e6a74e654256bbd5fc6b358a0a3b5639a4284998b9af5996acf63a4ab8c9293</originalsourceid><addsrcrecordid>eNpVkMtKAzEYheOlYK3zAOImLzA1k9vkX2qpWqgUvKzLnzRToumkZKZI396KRfBszuI7fItDyHXFxlXF4Hb2sngdc8ZgrISSQtUnpIDaVJJLKQyT8pQMeaVEyYzWZ_-YqM__mDIDcvmjAca4YRek6LoPdohU3HA9JM_3IcW0Dg5j3NPQdtuQ_Yq61PY5RdqkTHOyqQ-OYt7QXRfaNW39LmOkqXMhRuwPm9b3Xyl_XpFBg7HzxbFH5P1h-jZ5KueLx9nkbl4GXkFf6tprrKXXSnKlrV2pxmkrlEGGwiotACU3EsBYwEYBaHSNFijRGgccxIjc_HqD9365zWGDeb88PiW-AdZaVoY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Biologically inspired control for robotic arm using neural oscillator network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Woosung Yang ; Ji-Hun Bae ; Yonghwan Oh ; Nak Young Chong ; Bum Jae You</creator><creatorcontrib>Woosung Yang ; Ji-Hun Bae ; Yonghwan Oh ; Nak Young Chong ; Bum Jae You</creatorcontrib><description>It is known that biologically inspired neural systems could exhibit natural dynamics efficiently and robustly for motion control, especially for rhythmic motion tasks. In addition, humans or animals exhibit natural adaptive motions without considering their kinematic configurations against unexpected disturbances or environment changes. In this paper, we focus on rhythmic arm motions that can be achieved by using a controller based on neural oscillators and virtual force. In comparison with conventional researches, this work treats neither trajectories planning nor inverse kinematics. Instead of those, a few desired points in task-space and a control method with Jacobian transpose and joint velocity damping are merely adopted. In addition, if the joints of robotic arms are coupled to neural oscillators, they may be capable of achieving biologically inspired motions corresponding to environmental changes. To verify the proposed control scheme, we perform some simulations to trace a desired motion and show the potential features related with self-adaptation that enables a three-link planar arm to make adaptive changes from the given motion to a compliant motion. Specifically, we investigate that human-like movements and motion repeatability are satisfied under kinematic redundancy of joints.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424438037</identifier><identifier>ISBN: 1424438039</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424438044</identifier><identifier>EISBN: 1424438047</identifier><identifier>DOI: 10.1109/IROS.2009.5354357</identifier><identifier>LCCN: 2009900280</identifier><language>eng</language><publisher>IEEE</publisher><subject>Animals ; Biological control systems ; Force control ; Humans ; Kinematics ; Motion control ; Oscillators ; Robot control ; Robust control ; Trajectory</subject><ispartof>2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, p.135-141</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5354357$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5354357$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Woosung Yang</creatorcontrib><creatorcontrib>Ji-Hun Bae</creatorcontrib><creatorcontrib>Yonghwan Oh</creatorcontrib><creatorcontrib>Nak Young Chong</creatorcontrib><creatorcontrib>Bum Jae You</creatorcontrib><title>Biologically inspired control for robotic arm using neural oscillator network</title><title>2009 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>It is known that biologically inspired neural systems could exhibit natural dynamics efficiently and robustly for motion control, especially for rhythmic motion tasks. In addition, humans or animals exhibit natural adaptive motions without considering their kinematic configurations against unexpected disturbances or environment changes. In this paper, we focus on rhythmic arm motions that can be achieved by using a controller based on neural oscillators and virtual force. In comparison with conventional researches, this work treats neither trajectories planning nor inverse kinematics. Instead of those, a few desired points in task-space and a control method with Jacobian transpose and joint velocity damping are merely adopted. In addition, if the joints of robotic arms are coupled to neural oscillators, they may be capable of achieving biologically inspired motions corresponding to environmental changes. To verify the proposed control scheme, we perform some simulations to trace a desired motion and show the potential features related with self-adaptation that enables a three-link planar arm to make adaptive changes from the given motion to a compliant motion. Specifically, we investigate that human-like movements and motion repeatability are satisfied under kinematic redundancy of joints.</description><subject>Animals</subject><subject>Biological control systems</subject><subject>Force control</subject><subject>Humans</subject><subject>Kinematics</subject><subject>Motion control</subject><subject>Oscillators</subject><subject>Robot control</subject><subject>Robust control</subject><subject>Trajectory</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424438037</isbn><isbn>1424438039</isbn><isbn>9781424438044</isbn><isbn>1424438047</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKAzEYheOlYK3zAOImLzA1k9vkX2qpWqgUvKzLnzRToumkZKZI396KRfBszuI7fItDyHXFxlXF4Hb2sngdc8ZgrISSQtUnpIDaVJJLKQyT8pQMeaVEyYzWZ_-YqM__mDIDcvmjAca4YRek6LoPdohU3HA9JM_3IcW0Dg5j3NPQdtuQ_Yq61PY5RdqkTHOyqQ-OYt7QXRfaNW39LmOkqXMhRuwPm9b3Xyl_XpFBg7HzxbFH5P1h-jZ5KueLx9nkbl4GXkFf6tprrKXXSnKlrV2pxmkrlEGGwiotACU3EsBYwEYBaHSNFijRGgccxIjc_HqD9365zWGDeb88PiW-AdZaVoY</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Woosung Yang</creator><creator>Ji-Hun Bae</creator><creator>Yonghwan Oh</creator><creator>Nak Young Chong</creator><creator>Bum Jae You</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200910</creationdate><title>Biologically inspired control for robotic arm using neural oscillator network</title><author>Woosung Yang ; Ji-Hun Bae ; Yonghwan Oh ; Nak Young Chong ; Bum Jae You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-67e6a74e654256bbd5fc6b358a0a3b5639a4284998b9af5996acf63a4ab8c9293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biological control systems</topic><topic>Force control</topic><topic>Humans</topic><topic>Kinematics</topic><topic>Motion control</topic><topic>Oscillators</topic><topic>Robot control</topic><topic>Robust control</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Woosung Yang</creatorcontrib><creatorcontrib>Ji-Hun Bae</creatorcontrib><creatorcontrib>Yonghwan Oh</creatorcontrib><creatorcontrib>Nak Young Chong</creatorcontrib><creatorcontrib>Bum Jae You</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Woosung Yang</au><au>Ji-Hun Bae</au><au>Yonghwan Oh</au><au>Nak Young Chong</au><au>Bum Jae You</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Biologically inspired control for robotic arm using neural oscillator network</atitle><btitle>2009 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2009-10</date><risdate>2009</risdate><spage>135</spage><epage>141</epage><pages>135-141</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424438037</isbn><isbn>1424438039</isbn><eisbn>9781424438044</eisbn><eisbn>1424438047</eisbn><abstract>It is known that biologically inspired neural systems could exhibit natural dynamics efficiently and robustly for motion control, especially for rhythmic motion tasks. In addition, humans or animals exhibit natural adaptive motions without considering their kinematic configurations against unexpected disturbances or environment changes. In this paper, we focus on rhythmic arm motions that can be achieved by using a controller based on neural oscillators and virtual force. In comparison with conventional researches, this work treats neither trajectories planning nor inverse kinematics. Instead of those, a few desired points in task-space and a control method with Jacobian transpose and joint velocity damping are merely adopted. In addition, if the joints of robotic arms are coupled to neural oscillators, they may be capable of achieving biologically inspired motions corresponding to environmental changes. To verify the proposed control scheme, we perform some simulations to trace a desired motion and show the potential features related with self-adaptation that enables a three-link planar arm to make adaptive changes from the given motion to a compliant motion. Specifically, we investigate that human-like movements and motion repeatability are satisfied under kinematic redundancy of joints.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2009.5354357</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, p.135-141 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_5354357 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Animals Biological control systems Force control Humans Kinematics Motion control Oscillators Robot control Robust control Trajectory |
title | Biologically inspired control for robotic arm using neural oscillator network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Biologically%20inspired%20control%20for%20robotic%20arm%20using%20neural%20oscillator%20network&rft.btitle=2009%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Woosung%20Yang&rft.date=2009-10&rft.spage=135&rft.epage=141&rft.pages=135-141&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424438037&rft.isbn_list=1424438039&rft_id=info:doi/10.1109/IROS.2009.5354357&rft_dat=%3Cieee_6IE%3E5354357%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424438044&rft.eisbn_list=1424438047&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5354357&rfr_iscdi=true |