Fast 3D mapping by matching planes extracted from range sensor point-clouds
This article addresses fast 3D mapping by a mobile robot in a predominantly planar environment. It is based on a novel pose registration algorithm based entirely on matching features composed of plane-segments extracted from point-clouds sampled from a 3D sensor. The approach has advantages in terms...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1155 |
---|---|
container_issue | |
container_start_page | 1150 |
container_title | |
container_volume | |
creator | Pathak, K. Vaskevicius, N. Poppinga, J. Pfingsthorn, M. Schwertfeger, S. Birk, A. |
description | This article addresses fast 3D mapping by a mobile robot in a predominantly planar environment. It is based on a novel pose registration algorithm based entirely on matching features composed of plane-segments extracted from point-clouds sampled from a 3D sensor. The approach has advantages in terms of robustness, speed and storage as compared to the voxel based approaches. Unlike previous approaches, the uncertainty in plane parameters is utilized to compute the uncertainty in the pose computed by scan-registration. The algorithm is illustrated by creating a full 3D model of a multi-level robot testing arena. |
doi_str_mv | 10.1109/IROS.2009.5354061 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5354061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5354061</ieee_id><sourcerecordid>5354061</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7c9edfcc773dc70fe00e2a5c5fa6cfc3273a55ecd33bee0e8f951a2e986ec2a83</originalsourceid><addsrcrecordid>eNpVkMtKAzEYheOlYK3zAOImLzD1z22SLKVaLRYKXtYlzfypI3MjGcG-vS0WwbM5Bz74FoeQawZTxsDeLl5Wr1MOYKdKKAkFOyGZ1YZJLqUwIOUpGXOmRA6mKM7-MaHP_5gyI3J50FgAbuCCZCl9wj5SccOLMXmeuzRQcU8b1_dVu6Wb3X4O_uOw-9q1mCh-D9H5AUsaYtfQ6Not0oRt6iLtu6odcl93X2W6IqPg6oTZsSfkff7wNnvKl6vHxexumVdMqyHX3mIZvNdalF5DQADkTnkVXOGDF1wLpxT6UogNIqAJVjHH0ZoCPXdGTMjNr7dCxHUfq8bF3fr4k_gBlt9WHw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast 3D mapping by matching planes extracted from range sensor point-clouds</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pathak, K. ; Vaskevicius, N. ; Poppinga, J. ; Pfingsthorn, M. ; Schwertfeger, S. ; Birk, A.</creator><creatorcontrib>Pathak, K. ; Vaskevicius, N. ; Poppinga, J. ; Pfingsthorn, M. ; Schwertfeger, S. ; Birk, A.</creatorcontrib><description>This article addresses fast 3D mapping by a mobile robot in a predominantly planar environment. It is based on a novel pose registration algorithm based entirely on matching features composed of plane-segments extracted from point-clouds sampled from a 3D sensor. The approach has advantages in terms of robustness, speed and storage as compared to the voxel based approaches. Unlike previous approaches, the uncertainty in plane parameters is utilized to compute the uncertainty in the pose computed by scan-registration. The algorithm is illustrated by creating a full 3D model of a multi-level robot testing arena.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424438037</identifier><identifier>ISBN: 1424438039</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424438044</identifier><identifier>EISBN: 1424438047</identifier><identifier>DOI: 10.1109/IROS.2009.5354061</identifier><identifier>LCCN: 2009900280</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data visualization ; Intelligent robots ; Iterative closest point algorithm ; Layout ; Robot kinematics ; Robustness ; Sensor phenomena and characterization ; Simultaneous localization and mapping ; Uncertainty ; USA Councils</subject><ispartof>2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, p.1150-1155</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5354061$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5354061$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pathak, K.</creatorcontrib><creatorcontrib>Vaskevicius, N.</creatorcontrib><creatorcontrib>Poppinga, J.</creatorcontrib><creatorcontrib>Pfingsthorn, M.</creatorcontrib><creatorcontrib>Schwertfeger, S.</creatorcontrib><creatorcontrib>Birk, A.</creatorcontrib><title>Fast 3D mapping by matching planes extracted from range sensor point-clouds</title><title>2009 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>This article addresses fast 3D mapping by a mobile robot in a predominantly planar environment. It is based on a novel pose registration algorithm based entirely on matching features composed of plane-segments extracted from point-clouds sampled from a 3D sensor. The approach has advantages in terms of robustness, speed and storage as compared to the voxel based approaches. Unlike previous approaches, the uncertainty in plane parameters is utilized to compute the uncertainty in the pose computed by scan-registration. The algorithm is illustrated by creating a full 3D model of a multi-level robot testing arena.</description><subject>Data visualization</subject><subject>Intelligent robots</subject><subject>Iterative closest point algorithm</subject><subject>Layout</subject><subject>Robot kinematics</subject><subject>Robustness</subject><subject>Sensor phenomena and characterization</subject><subject>Simultaneous localization and mapping</subject><subject>Uncertainty</subject><subject>USA Councils</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424438037</isbn><isbn>1424438039</isbn><isbn>9781424438044</isbn><isbn>1424438047</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKAzEYheOlYK3zAOImLzD1z22SLKVaLRYKXtYlzfypI3MjGcG-vS0WwbM5Bz74FoeQawZTxsDeLl5Wr1MOYKdKKAkFOyGZ1YZJLqUwIOUpGXOmRA6mKM7-MaHP_5gyI3J50FgAbuCCZCl9wj5SccOLMXmeuzRQcU8b1_dVu6Wb3X4O_uOw-9q1mCh-D9H5AUsaYtfQ6Not0oRt6iLtu6odcl93X2W6IqPg6oTZsSfkff7wNnvKl6vHxexumVdMqyHX3mIZvNdalF5DQADkTnkVXOGDF1wLpxT6UogNIqAJVjHH0ZoCPXdGTMjNr7dCxHUfq8bF3fr4k_gBlt9WHw</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Pathak, K.</creator><creator>Vaskevicius, N.</creator><creator>Poppinga, J.</creator><creator>Pfingsthorn, M.</creator><creator>Schwertfeger, S.</creator><creator>Birk, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200910</creationdate><title>Fast 3D mapping by matching planes extracted from range sensor point-clouds</title><author>Pathak, K. ; Vaskevicius, N. ; Poppinga, J. ; Pfingsthorn, M. ; Schwertfeger, S. ; Birk, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7c9edfcc773dc70fe00e2a5c5fa6cfc3273a55ecd33bee0e8f951a2e986ec2a83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Data visualization</topic><topic>Intelligent robots</topic><topic>Iterative closest point algorithm</topic><topic>Layout</topic><topic>Robot kinematics</topic><topic>Robustness</topic><topic>Sensor phenomena and characterization</topic><topic>Simultaneous localization and mapping</topic><topic>Uncertainty</topic><topic>USA Councils</topic><toplevel>online_resources</toplevel><creatorcontrib>Pathak, K.</creatorcontrib><creatorcontrib>Vaskevicius, N.</creatorcontrib><creatorcontrib>Poppinga, J.</creatorcontrib><creatorcontrib>Pfingsthorn, M.</creatorcontrib><creatorcontrib>Schwertfeger, S.</creatorcontrib><creatorcontrib>Birk, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pathak, K.</au><au>Vaskevicius, N.</au><au>Poppinga, J.</au><au>Pfingsthorn, M.</au><au>Schwertfeger, S.</au><au>Birk, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast 3D mapping by matching planes extracted from range sensor point-clouds</atitle><btitle>2009 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2009-10</date><risdate>2009</risdate><spage>1150</spage><epage>1155</epage><pages>1150-1155</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424438037</isbn><isbn>1424438039</isbn><eisbn>9781424438044</eisbn><eisbn>1424438047</eisbn><abstract>This article addresses fast 3D mapping by a mobile robot in a predominantly planar environment. It is based on a novel pose registration algorithm based entirely on matching features composed of plane-segments extracted from point-clouds sampled from a 3D sensor. The approach has advantages in terms of robustness, speed and storage as compared to the voxel based approaches. Unlike previous approaches, the uncertainty in plane parameters is utilized to compute the uncertainty in the pose computed by scan-registration. The algorithm is illustrated by creating a full 3D model of a multi-level robot testing arena.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2009.5354061</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, p.1150-1155 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_5354061 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data visualization Intelligent robots Iterative closest point algorithm Layout Robot kinematics Robustness Sensor phenomena and characterization Simultaneous localization and mapping Uncertainty USA Councils |
title | Fast 3D mapping by matching planes extracted from range sensor point-clouds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%203D%20mapping%20by%20matching%20planes%20extracted%20from%20range%20sensor%20point-clouds&rft.btitle=2009%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Pathak,%20K.&rft.date=2009-10&rft.spage=1150&rft.epage=1155&rft.pages=1150-1155&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424438037&rft.isbn_list=1424438039&rft_id=info:doi/10.1109/IROS.2009.5354061&rft_dat=%3Cieee_6IE%3E5354061%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424438044&rft.eisbn_list=1424438047&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5354061&rfr_iscdi=true |