Fast 3D mapping by matching planes extracted from range sensor point-clouds

This article addresses fast 3D mapping by a mobile robot in a predominantly planar environment. It is based on a novel pose registration algorithm based entirely on matching features composed of plane-segments extracted from point-clouds sampled from a 3D sensor. The approach has advantages in terms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pathak, K., Vaskevicius, N., Poppinga, J., Pfingsthorn, M., Schwertfeger, S., Birk, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1155
container_issue
container_start_page 1150
container_title
container_volume
creator Pathak, K.
Vaskevicius, N.
Poppinga, J.
Pfingsthorn, M.
Schwertfeger, S.
Birk, A.
description This article addresses fast 3D mapping by a mobile robot in a predominantly planar environment. It is based on a novel pose registration algorithm based entirely on matching features composed of plane-segments extracted from point-clouds sampled from a 3D sensor. The approach has advantages in terms of robustness, speed and storage as compared to the voxel based approaches. Unlike previous approaches, the uncertainty in plane parameters is utilized to compute the uncertainty in the pose computed by scan-registration. The algorithm is illustrated by creating a full 3D model of a multi-level robot testing arena.
doi_str_mv 10.1109/IROS.2009.5354061
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5354061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5354061</ieee_id><sourcerecordid>5354061</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7c9edfcc773dc70fe00e2a5c5fa6cfc3273a55ecd33bee0e8f951a2e986ec2a83</originalsourceid><addsrcrecordid>eNpVkMtKAzEYheOlYK3zAOImLzD1z22SLKVaLRYKXtYlzfypI3MjGcG-vS0WwbM5Bz74FoeQawZTxsDeLl5Wr1MOYKdKKAkFOyGZ1YZJLqUwIOUpGXOmRA6mKM7-MaHP_5gyI3J50FgAbuCCZCl9wj5SccOLMXmeuzRQcU8b1_dVu6Wb3X4O_uOw-9q1mCh-D9H5AUsaYtfQ6Not0oRt6iLtu6odcl93X2W6IqPg6oTZsSfkff7wNnvKl6vHxexumVdMqyHX3mIZvNdalF5DQADkTnkVXOGDF1wLpxT6UogNIqAJVjHH0ZoCPXdGTMjNr7dCxHUfq8bF3fr4k_gBlt9WHw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast 3D mapping by matching planes extracted from range sensor point-clouds</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pathak, K. ; Vaskevicius, N. ; Poppinga, J. ; Pfingsthorn, M. ; Schwertfeger, S. ; Birk, A.</creator><creatorcontrib>Pathak, K. ; Vaskevicius, N. ; Poppinga, J. ; Pfingsthorn, M. ; Schwertfeger, S. ; Birk, A.</creatorcontrib><description>This article addresses fast 3D mapping by a mobile robot in a predominantly planar environment. It is based on a novel pose registration algorithm based entirely on matching features composed of plane-segments extracted from point-clouds sampled from a 3D sensor. The approach has advantages in terms of robustness, speed and storage as compared to the voxel based approaches. Unlike previous approaches, the uncertainty in plane parameters is utilized to compute the uncertainty in the pose computed by scan-registration. The algorithm is illustrated by creating a full 3D model of a multi-level robot testing arena.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424438037</identifier><identifier>ISBN: 1424438039</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424438044</identifier><identifier>EISBN: 1424438047</identifier><identifier>DOI: 10.1109/IROS.2009.5354061</identifier><identifier>LCCN: 2009900280</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data visualization ; Intelligent robots ; Iterative closest point algorithm ; Layout ; Robot kinematics ; Robustness ; Sensor phenomena and characterization ; Simultaneous localization and mapping ; Uncertainty ; USA Councils</subject><ispartof>2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, p.1150-1155</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5354061$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5354061$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pathak, K.</creatorcontrib><creatorcontrib>Vaskevicius, N.</creatorcontrib><creatorcontrib>Poppinga, J.</creatorcontrib><creatorcontrib>Pfingsthorn, M.</creatorcontrib><creatorcontrib>Schwertfeger, S.</creatorcontrib><creatorcontrib>Birk, A.</creatorcontrib><title>Fast 3D mapping by matching planes extracted from range sensor point-clouds</title><title>2009 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>This article addresses fast 3D mapping by a mobile robot in a predominantly planar environment. It is based on a novel pose registration algorithm based entirely on matching features composed of plane-segments extracted from point-clouds sampled from a 3D sensor. The approach has advantages in terms of robustness, speed and storage as compared to the voxel based approaches. Unlike previous approaches, the uncertainty in plane parameters is utilized to compute the uncertainty in the pose computed by scan-registration. The algorithm is illustrated by creating a full 3D model of a multi-level robot testing arena.</description><subject>Data visualization</subject><subject>Intelligent robots</subject><subject>Iterative closest point algorithm</subject><subject>Layout</subject><subject>Robot kinematics</subject><subject>Robustness</subject><subject>Sensor phenomena and characterization</subject><subject>Simultaneous localization and mapping</subject><subject>Uncertainty</subject><subject>USA Councils</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424438037</isbn><isbn>1424438039</isbn><isbn>9781424438044</isbn><isbn>1424438047</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKAzEYheOlYK3zAOImLzD1z22SLKVaLRYKXtYlzfypI3MjGcG-vS0WwbM5Bz74FoeQawZTxsDeLl5Wr1MOYKdKKAkFOyGZ1YZJLqUwIOUpGXOmRA6mKM7-MaHP_5gyI3J50FgAbuCCZCl9wj5SccOLMXmeuzRQcU8b1_dVu6Wb3X4O_uOw-9q1mCh-D9H5AUsaYtfQ6Not0oRt6iLtu6odcl93X2W6IqPg6oTZsSfkff7wNnvKl6vHxexumVdMqyHX3mIZvNdalF5DQADkTnkVXOGDF1wLpxT6UogNIqAJVjHH0ZoCPXdGTMjNr7dCxHUfq8bF3fr4k_gBlt9WHw</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Pathak, K.</creator><creator>Vaskevicius, N.</creator><creator>Poppinga, J.</creator><creator>Pfingsthorn, M.</creator><creator>Schwertfeger, S.</creator><creator>Birk, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200910</creationdate><title>Fast 3D mapping by matching planes extracted from range sensor point-clouds</title><author>Pathak, K. ; Vaskevicius, N. ; Poppinga, J. ; Pfingsthorn, M. ; Schwertfeger, S. ; Birk, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7c9edfcc773dc70fe00e2a5c5fa6cfc3273a55ecd33bee0e8f951a2e986ec2a83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Data visualization</topic><topic>Intelligent robots</topic><topic>Iterative closest point algorithm</topic><topic>Layout</topic><topic>Robot kinematics</topic><topic>Robustness</topic><topic>Sensor phenomena and characterization</topic><topic>Simultaneous localization and mapping</topic><topic>Uncertainty</topic><topic>USA Councils</topic><toplevel>online_resources</toplevel><creatorcontrib>Pathak, K.</creatorcontrib><creatorcontrib>Vaskevicius, N.</creatorcontrib><creatorcontrib>Poppinga, J.</creatorcontrib><creatorcontrib>Pfingsthorn, M.</creatorcontrib><creatorcontrib>Schwertfeger, S.</creatorcontrib><creatorcontrib>Birk, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pathak, K.</au><au>Vaskevicius, N.</au><au>Poppinga, J.</au><au>Pfingsthorn, M.</au><au>Schwertfeger, S.</au><au>Birk, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast 3D mapping by matching planes extracted from range sensor point-clouds</atitle><btitle>2009 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2009-10</date><risdate>2009</risdate><spage>1150</spage><epage>1155</epage><pages>1150-1155</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424438037</isbn><isbn>1424438039</isbn><eisbn>9781424438044</eisbn><eisbn>1424438047</eisbn><abstract>This article addresses fast 3D mapping by a mobile robot in a predominantly planar environment. It is based on a novel pose registration algorithm based entirely on matching features composed of plane-segments extracted from point-clouds sampled from a 3D sensor. The approach has advantages in terms of robustness, speed and storage as compared to the voxel based approaches. Unlike previous approaches, the uncertainty in plane parameters is utilized to compute the uncertainty in the pose computed by scan-registration. The algorithm is illustrated by creating a full 3D model of a multi-level robot testing arena.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2009.5354061</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, p.1150-1155
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_5354061
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data visualization
Intelligent robots
Iterative closest point algorithm
Layout
Robot kinematics
Robustness
Sensor phenomena and characterization
Simultaneous localization and mapping
Uncertainty
USA Councils
title Fast 3D mapping by matching planes extracted from range sensor point-clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%203D%20mapping%20by%20matching%20planes%20extracted%20from%20range%20sensor%20point-clouds&rft.btitle=2009%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Pathak,%20K.&rft.date=2009-10&rft.spage=1150&rft.epage=1155&rft.pages=1150-1155&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424438037&rft.isbn_list=1424438039&rft_id=info:doi/10.1109/IROS.2009.5354061&rft_dat=%3Cieee_6IE%3E5354061%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424438044&rft.eisbn_list=1424438047&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5354061&rfr_iscdi=true