Learning moving objects in a multi-target tracking scenario for mobile robots that use laser range measurements
This paper addresses the problem of real-time moving-object detection, classification and tracking in populated and dynamic environments. In this scenario, a mobile robot uses 2D laser range data to recognize, track and avoid moving targets. Most previous approaches either rely on pre-defined data f...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses the problem of real-time moving-object detection, classification and tracking in populated and dynamic environments. In this scenario, a mobile robot uses 2D laser range data to recognize, track and avoid moving targets. Most previous approaches either rely on pre-defined data features or off-line training of a classifier for specific data sets, thus eliminating the possibility to detect and track different-shaped moving objects. We propose a novel and adaptive technique where potential moving objects are classified and learned in real-time using a fuzzy ART neural network algorithm. Experimental results indicate that our method can effectively distinguish and track moving targets in cluttered indoor environments, while at the same time learning their shape. |
---|---|
ISSN: | 2153-0858 2153-0866 |
DOI: | 10.1109/IROS.2009.5353913 |