Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model
In some expensive multiobjective optimization problems (MOPs), several function evaluations can be carried out in a batch way. Therefore, it is very desirable to develop methods which can generate multipler test points simultaneously. This paper proposes such a method, called MOEA/D-EGO, for dealing...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2010-06, Vol.14 (3), p.456-474 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 474 |
---|---|
container_issue | 3 |
container_start_page | 456 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 14 |
creator | Qingfu Zhang Wudong Liu Tsang, Edward Virginas, Botond |
description | In some expensive multiobjective optimization problems (MOPs), several function evaluations can be carried out in a batch way. Therefore, it is very desirable to develop methods which can generate multipler test points simultaneously. This paper proposes such a method, called MOEA/D-EGO, for dealing with expensive multiobjective optimization. MOEA/D-EGO decomposes an MOP in question into a number of single-objective optimization subproblems. A predictive model is built for each subproblem based on the points evaluated so far. Effort has been made to reduce the overhead for modeling and to improve the prediction quality. At each generation, MOEA/D is used for maximizing the expected improvement metric values of all the subproblems, and then several test points are selected for evaluation. Extensive experimental studies have been carried out to investigate the ability of the proposed algorithm. |
doi_str_mv | 10.1109/TEVC.2009.2033671 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5353656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5353656</ieee_id><sourcerecordid>2717032741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-3a1c4fa80b373a7941dae61c7a555b98c577c5fa04df572e6dbda1c8faef61193</originalsourceid><addsrcrecordid>eNpdkE9PwyAYxonRxDn9AMZLE2M8dYNSoByXWadxyzzMPzdCKUSWrp3QGuenl2aLBy8vL_B7njx5ALhEcIQQ5ONV_jodJRDyMDCmDB2BAeIpiiFM6HHYYcZjxrL3U3Dm_RpClBLEB-Ap_97q2tsvHS26qrVNsdaq7a_LbWs39keGtzoqdtFimU_Gd9GbbT-imey8t7KOnl2jtPfRoil1dQ5OjKy8vjicQ_Byn6-mD_F8OXucTuaxwoS0MZZIpUZmsMAMSxZCllJTpJgkhBQ8U4QxRYyEaWkISzQtizJIMiO1oQhxPAS3e9-taz477VuxsV7pqpK1bjovGMEU8zRlgbz-R66bztUhnEAwYQnklKeBQntKucZ7p43YOruRbhcg0bcr-nZF3644tBs0Nwdn6ZWsjJO1sv5PmCRZRiHsE1ztOau1_vsmOEQkFP8CLEiCTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027209694</pqid></control><display><type>article</type><title>Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model</title><source>IEEE Electronic Library (IEL)</source><creator>Qingfu Zhang ; Wudong Liu ; Tsang, Edward ; Virginas, Botond</creator><creatorcontrib>Qingfu Zhang ; Wudong Liu ; Tsang, Edward ; Virginas, Botond</creatorcontrib><description>In some expensive multiobjective optimization problems (MOPs), several function evaluations can be carried out in a batch way. Therefore, it is very desirable to develop methods which can generate multipler test points simultaneously. This paper proposes such a method, called MOEA/D-EGO, for dealing with expensive multiobjective optimization. MOEA/D-EGO decomposes an MOP in question into a number of single-objective optimization subproblems. A predictive model is built for each subproblem based on the points evaluated so far. Effort has been made to reduce the overhead for modeling and to improve the prediction quality. At each generation, MOEA/D is used for maximizing the expected improvement metric values of all the subproblems, and then several test points are selected for evaluation. Extensive experimental studies have been carried out to investigate the ability of the proposed algorithm.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2009.2033671</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic testing ; Algorithms ; Applied sciences ; Artificial intelligence ; Computational efficiency ; Computer science; control theory; systems ; Computer simulation ; Dealing ; Decomposition ; Design optimization ; Evolutionary algorithm ; Evolutionary algorithms ; Exact sciences and technology ; expensive optimization ; Gaussian ; Gaussian processes ; Gaussian stochastic processes ; Learning and adaptive systems ; Mathematical analysis ; Mathematical models ; multiobjective optimization ; Optimization ; Optimization methods ; Pareto optimality ; Pareto optimization ; Physics computing ; Predictive models ; Stochastic processes</subject><ispartof>IEEE transactions on evolutionary computation, 2010-06, Vol.14 (3), p.456-474</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-3a1c4fa80b373a7941dae61c7a555b98c577c5fa04df572e6dbda1c8faef61193</citedby><cites>FETCH-LOGICAL-c355t-3a1c4fa80b373a7941dae61c7a555b98c577c5fa04df572e6dbda1c8faef61193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5353656$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5353656$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22886007$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Qingfu Zhang</creatorcontrib><creatorcontrib>Wudong Liu</creatorcontrib><creatorcontrib>Tsang, Edward</creatorcontrib><creatorcontrib>Virginas, Botond</creatorcontrib><title>Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>In some expensive multiobjective optimization problems (MOPs), several function evaluations can be carried out in a batch way. Therefore, it is very desirable to develop methods which can generate multipler test points simultaneously. This paper proposes such a method, called MOEA/D-EGO, for dealing with expensive multiobjective optimization. MOEA/D-EGO decomposes an MOP in question into a number of single-objective optimization subproblems. A predictive model is built for each subproblem based on the points evaluated so far. Effort has been made to reduce the overhead for modeling and to improve the prediction quality. At each generation, MOEA/D is used for maximizing the expected improvement metric values of all the subproblems, and then several test points are selected for evaluation. Extensive experimental studies have been carried out to investigate the ability of the proposed algorithm.</description><subject>Acoustic testing</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computational efficiency</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Dealing</subject><subject>Decomposition</subject><subject>Design optimization</subject><subject>Evolutionary algorithm</subject><subject>Evolutionary algorithms</subject><subject>Exact sciences and technology</subject><subject>expensive optimization</subject><subject>Gaussian</subject><subject>Gaussian processes</subject><subject>Gaussian stochastic processes</subject><subject>Learning and adaptive systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>multiobjective optimization</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Pareto optimality</subject><subject>Pareto optimization</subject><subject>Physics computing</subject><subject>Predictive models</subject><subject>Stochastic processes</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9PwyAYxonRxDn9AMZLE2M8dYNSoByXWadxyzzMPzdCKUSWrp3QGuenl2aLBy8vL_B7njx5ALhEcIQQ5ONV_jodJRDyMDCmDB2BAeIpiiFM6HHYYcZjxrL3U3Dm_RpClBLEB-Ap_97q2tsvHS26qrVNsdaq7a_LbWs39keGtzoqdtFimU_Gd9GbbT-imey8t7KOnl2jtPfRoil1dQ5OjKy8vjicQ_Byn6-mD_F8OXucTuaxwoS0MZZIpUZmsMAMSxZCllJTpJgkhBQ8U4QxRYyEaWkISzQtizJIMiO1oQhxPAS3e9-taz477VuxsV7pqpK1bjovGMEU8zRlgbz-R66bztUhnEAwYQnklKeBQntKucZ7p43YOruRbhcg0bcr-nZF3644tBs0Nwdn6ZWsjJO1sv5PmCRZRiHsE1ztOau1_vsmOEQkFP8CLEiCTA</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Qingfu Zhang</creator><creator>Wudong Liu</creator><creator>Tsang, Edward</creator><creator>Virginas, Botond</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100601</creationdate><title>Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model</title><author>Qingfu Zhang ; Wudong Liu ; Tsang, Edward ; Virginas, Botond</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-3a1c4fa80b373a7941dae61c7a555b98c577c5fa04df572e6dbda1c8faef61193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acoustic testing</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computational efficiency</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Dealing</topic><topic>Decomposition</topic><topic>Design optimization</topic><topic>Evolutionary algorithm</topic><topic>Evolutionary algorithms</topic><topic>Exact sciences and technology</topic><topic>expensive optimization</topic><topic>Gaussian</topic><topic>Gaussian processes</topic><topic>Gaussian stochastic processes</topic><topic>Learning and adaptive systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>multiobjective optimization</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Pareto optimality</topic><topic>Pareto optimization</topic><topic>Physics computing</topic><topic>Predictive models</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qingfu Zhang</creatorcontrib><creatorcontrib>Wudong Liu</creatorcontrib><creatorcontrib>Tsang, Edward</creatorcontrib><creatorcontrib>Virginas, Botond</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qingfu Zhang</au><au>Wudong Liu</au><au>Tsang, Edward</au><au>Virginas, Botond</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>14</volume><issue>3</issue><spage>456</spage><epage>474</epage><pages>456-474</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>In some expensive multiobjective optimization problems (MOPs), several function evaluations can be carried out in a batch way. Therefore, it is very desirable to develop methods which can generate multipler test points simultaneously. This paper proposes such a method, called MOEA/D-EGO, for dealing with expensive multiobjective optimization. MOEA/D-EGO decomposes an MOP in question into a number of single-objective optimization subproblems. A predictive model is built for each subproblem based on the points evaluated so far. Effort has been made to reduce the overhead for modeling and to improve the prediction quality. At each generation, MOEA/D is used for maximizing the expected improvement metric values of all the subproblems, and then several test points are selected for evaluation. Extensive experimental studies have been carried out to investigate the ability of the proposed algorithm.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2009.2033671</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2010-06, Vol.14 (3), p.456-474 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_5353656 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic testing Algorithms Applied sciences Artificial intelligence Computational efficiency Computer science control theory systems Computer simulation Dealing Decomposition Design optimization Evolutionary algorithm Evolutionary algorithms Exact sciences and technology expensive optimization Gaussian Gaussian processes Gaussian stochastic processes Learning and adaptive systems Mathematical analysis Mathematical models multiobjective optimization Optimization Optimization methods Pareto optimality Pareto optimization Physics computing Predictive models Stochastic processes |
title | Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expensive%20Multiobjective%20Optimization%20by%20MOEA/D%20With%20Gaussian%20Process%20Model&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Qingfu%20Zhang&rft.date=2010-06-01&rft.volume=14&rft.issue=3&rft.spage=456&rft.epage=474&rft.pages=456-474&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2009.2033671&rft_dat=%3Cproquest_RIE%3E2717032741%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027209694&rft_id=info:pmid/&rft_ieee_id=5353656&rfr_iscdi=true |