A technique based on chaos for brain computer interfacing

A user of Brain Computer Interface (BCI) system must be able to control external computer devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. There are problems associated w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Banitalebi, A., Setarehdan, S.K., Hossein-Zadeh, G.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 469
container_issue
container_start_page 464
container_title
container_volume
creator Banitalebi, A.
Setarehdan, S.K.
Hossein-Zadeh, G.A.
description A user of Brain Computer Interface (BCI) system must be able to control external computer devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. There are problems associated with classification of different BCI tasks. In this paper we propose the use of chaotic indices of the BCI. We use largest Lyapunov exponent, mutual information, correlation dimension and minimum embedding dimension as the features for the classification of EEG signals which have been released by BCI Competition IV. A multi-layer Perceptron classifier and a KM-SVM(support vector machine classifier based on k-means clustering) is used for classification process, which lead us to an accuracy of 95.5%, for discrimination between two motor imagery tasks.
doi_str_mv 10.1109/CSICC.2009.5349623
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5349623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5349623</ieee_id><sourcerecordid>5349623</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-bfa74fba4d58a2a28336c217184873a8ee79e9a004abc2ede1843c3754765bd53</originalsourceid><addsrcrecordid>eNpVj81OwzAQhI1QJaDkBeDiF0jwzzq2j1XET6VKHOi9WjsbakSTkqQH3h4jemEPu_o0q9EMY3dSVFIK_9C8rZumUkL4ymjwtdIXrPDWSVAAoGolL_-xhAW7-X33QgkFV6yYpg-RB4zOfM38is8U9336OhEPOFHLh57HPQ4T74aRhxFT5uFwPM008tTn3WFM_fstW3T4OVFxvku2fXrcNi_l5vV53aw2ZfJiLkOHFrqA0BqHCpXTuo5KWunAWY2OyHrymANhiIpayoKO2hqwtQmt0Ut2_2ebiGh3HNMBx-_dubz-ARimSis</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A technique based on chaos for brain computer interfacing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Banitalebi, A. ; Setarehdan, S.K. ; Hossein-Zadeh, G.A.</creator><creatorcontrib>Banitalebi, A. ; Setarehdan, S.K. ; Hossein-Zadeh, G.A.</creatorcontrib><description>A user of Brain Computer Interface (BCI) system must be able to control external computer devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. There are problems associated with classification of different BCI tasks. In this paper we propose the use of chaotic indices of the BCI. We use largest Lyapunov exponent, mutual information, correlation dimension and minimum embedding dimension as the features for the classification of EEG signals which have been released by BCI Competition IV. A multi-layer Perceptron classifier and a KM-SVM(support vector machine classifier based on k-means clustering) is used for classification process, which lead us to an accuracy of 95.5%, for discrimination between two motor imagery tasks.</description><identifier>ISBN: 9781424442614</identifier><identifier>ISBN: 1424442613</identifier><identifier>EISBN: 9781424442621</identifier><identifier>EISBN: 1424442621</identifier><identifier>DOI: 10.1109/CSICC.2009.5349623</identifier><identifier>LCCN: 2009902024</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain computer interfaces ; Brain modeling ; Chaos ; Computer interfaces ; Control systems ; Electroencephalography ; Equations ; Independent component analysis ; Intelligent control ; Process control</subject><ispartof>2009 14th International CSI Computer Conference, 2009, p.464-469</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5349623$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5349623$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Banitalebi, A.</creatorcontrib><creatorcontrib>Setarehdan, S.K.</creatorcontrib><creatorcontrib>Hossein-Zadeh, G.A.</creatorcontrib><title>A technique based on chaos for brain computer interfacing</title><title>2009 14th International CSI Computer Conference</title><addtitle>CSICC</addtitle><description>A user of Brain Computer Interface (BCI) system must be able to control external computer devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. There are problems associated with classification of different BCI tasks. In this paper we propose the use of chaotic indices of the BCI. We use largest Lyapunov exponent, mutual information, correlation dimension and minimum embedding dimension as the features for the classification of EEG signals which have been released by BCI Competition IV. A multi-layer Perceptron classifier and a KM-SVM(support vector machine classifier based on k-means clustering) is used for classification process, which lead us to an accuracy of 95.5%, for discrimination between two motor imagery tasks.</description><subject>Brain computer interfaces</subject><subject>Brain modeling</subject><subject>Chaos</subject><subject>Computer interfaces</subject><subject>Control systems</subject><subject>Electroencephalography</subject><subject>Equations</subject><subject>Independent component analysis</subject><subject>Intelligent control</subject><subject>Process control</subject><isbn>9781424442614</isbn><isbn>1424442613</isbn><isbn>9781424442621</isbn><isbn>1424442621</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81OwzAQhI1QJaDkBeDiF0jwzzq2j1XET6VKHOi9WjsbakSTkqQH3h4jemEPu_o0q9EMY3dSVFIK_9C8rZumUkL4ymjwtdIXrPDWSVAAoGolL_-xhAW7-X33QgkFV6yYpg-RB4zOfM38is8U9336OhEPOFHLh57HPQ4T74aRhxFT5uFwPM008tTn3WFM_fstW3T4OVFxvku2fXrcNi_l5vV53aw2ZfJiLkOHFrqA0BqHCpXTuo5KWunAWY2OyHrymANhiIpayoKO2hqwtQmt0Ut2_2ebiGh3HNMBx-_dubz-ARimSis</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Banitalebi, A.</creator><creator>Setarehdan, S.K.</creator><creator>Hossein-Zadeh, G.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>A technique based on chaos for brain computer interfacing</title><author>Banitalebi, A. ; Setarehdan, S.K. ; Hossein-Zadeh, G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-bfa74fba4d58a2a28336c217184873a8ee79e9a004abc2ede1843c3754765bd53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Brain computer interfaces</topic><topic>Brain modeling</topic><topic>Chaos</topic><topic>Computer interfaces</topic><topic>Control systems</topic><topic>Electroencephalography</topic><topic>Equations</topic><topic>Independent component analysis</topic><topic>Intelligent control</topic><topic>Process control</topic><toplevel>online_resources</toplevel><creatorcontrib>Banitalebi, A.</creatorcontrib><creatorcontrib>Setarehdan, S.K.</creatorcontrib><creatorcontrib>Hossein-Zadeh, G.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Banitalebi, A.</au><au>Setarehdan, S.K.</au><au>Hossein-Zadeh, G.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A technique based on chaos for brain computer interfacing</atitle><btitle>2009 14th International CSI Computer Conference</btitle><stitle>CSICC</stitle><date>2009-10</date><risdate>2009</risdate><spage>464</spage><epage>469</epage><pages>464-469</pages><isbn>9781424442614</isbn><isbn>1424442613</isbn><eisbn>9781424442621</eisbn><eisbn>1424442621</eisbn><abstract>A user of Brain Computer Interface (BCI) system must be able to control external computer devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. There are problems associated with classification of different BCI tasks. In this paper we propose the use of chaotic indices of the BCI. We use largest Lyapunov exponent, mutual information, correlation dimension and minimum embedding dimension as the features for the classification of EEG signals which have been released by BCI Competition IV. A multi-layer Perceptron classifier and a KM-SVM(support vector machine classifier based on k-means clustering) is used for classification process, which lead us to an accuracy of 95.5%, for discrimination between two motor imagery tasks.</abstract><pub>IEEE</pub><doi>10.1109/CSICC.2009.5349623</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424442614
ispartof 2009 14th International CSI Computer Conference, 2009, p.464-469
issn
language eng
recordid cdi_ieee_primary_5349623
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Brain computer interfaces
Brain modeling
Chaos
Computer interfaces
Control systems
Electroencephalography
Equations
Independent component analysis
Intelligent control
Process control
title A technique based on chaos for brain computer interfacing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20technique%20based%20on%20chaos%20for%20brain%20computer%20interfacing&rft.btitle=2009%2014th%20International%20CSI%20Computer%20Conference&rft.au=Banitalebi,%20A.&rft.date=2009-10&rft.spage=464&rft.epage=469&rft.pages=464-469&rft.isbn=9781424442614&rft.isbn_list=1424442613&rft_id=info:doi/10.1109/CSICC.2009.5349623&rft_dat=%3Cieee_6IE%3E5349623%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442621&rft.eisbn_list=1424442621&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5349623&rfr_iscdi=true