On-line evolving clustering for financial statements' anomalies detection

This document proposes an approach for financial statements' anomalies detection by using on-line evolving clustering. Official records of the financial activities of a business are called financial statements and they are recorded in journals and general ledger in a supervised process. Anomali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Omanovic, S., Avdagic, Z., Konjicija, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Omanovic, S.
Avdagic, Z.
Konjicija, S.
description This document proposes an approach for financial statements' anomalies detection by using on-line evolving clustering. Official records of the financial activities of a business are called financial statements and they are recorded in journals and general ledger in a supervised process. Anomalies in financial statements are caused by human mistakes during forming of financial statements, or as a result of changes in the software that produced un-expected errors, or as possible financial fraud.
doi_str_mv 10.1109/ICAT.2009.5348416
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5348416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5348416</ieee_id><sourcerecordid>5348416</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9f1772903f263423909967211d8abcb9734b65ae271b9fdfbcc0bc10086e77b73</originalsourceid><addsrcrecordid>eNpVUMFKAzEUjEhBrfsB4mVvnnZ9L8luNkcpWguFXvZekuyLRLZZ2cSCf2-LvTiXmYFhGIaxB4QaEfTzZvXS1xxA142QncT2ihVadSi5lJJz7K7_ecAFuzvHNaCWcMOKlD7hBNlwAfyWbXaxGkOkko7TeAzxo3Tjd8o0n6Wf5tKHaKILZixTNpkOFHN6Kk2cDmYMlMqBMrkcpnjPFt6MiYoLL1n_9tqv3qvtbn1ava2Chlxpj0pxDcLzVkgu9Glaqzji0BnrrFZC2rYxxBVa7QdvnQPrEKBrSSmrxJI9_tUGItp_zeFg5p_95QzxC7juUBo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On-line evolving clustering for financial statements' anomalies detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Omanovic, S. ; Avdagic, Z. ; Konjicija, S.</creator><creatorcontrib>Omanovic, S. ; Avdagic, Z. ; Konjicija, S.</creatorcontrib><description>This document proposes an approach for financial statements' anomalies detection by using on-line evolving clustering. Official records of the financial activities of a business are called financial statements and they are recorded in journals and general ledger in a supervised process. Anomalies in financial statements are caused by human mistakes during forming of financial statements, or as a result of changes in the software that produced un-expected errors, or as possible financial fraud.</description><identifier>ISBN: 9781424442201</identifier><identifier>ISBN: 1424442206</identifier><identifier>EISBN: 9781424442218</identifier><identifier>EISBN: 1424442214</identifier><identifier>DOI: 10.1109/ICAT.2009.5348416</identifier><identifier>LCCN: 2009901940</identifier><language>eng</language><publisher>IEEE</publisher><subject>anomalies detection ; Authentication ; Data security ; evolving clustering ; fraud detection ; Information security ; Performance analysis ; Privacy ; Product codes ; Radio frequency ; Radiofrequency identification ; Scalability</subject><ispartof>2009 XXII International Symposium on Information, Communication and Automation Technologies, 2009, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5348416$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5348416$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Omanovic, S.</creatorcontrib><creatorcontrib>Avdagic, Z.</creatorcontrib><creatorcontrib>Konjicija, S.</creatorcontrib><title>On-line evolving clustering for financial statements' anomalies detection</title><title>2009 XXII International Symposium on Information, Communication and Automation Technologies</title><addtitle>ICAT</addtitle><description>This document proposes an approach for financial statements' anomalies detection by using on-line evolving clustering. Official records of the financial activities of a business are called financial statements and they are recorded in journals and general ledger in a supervised process. Anomalies in financial statements are caused by human mistakes during forming of financial statements, or as a result of changes in the software that produced un-expected errors, or as possible financial fraud.</description><subject>anomalies detection</subject><subject>Authentication</subject><subject>Data security</subject><subject>evolving clustering</subject><subject>fraud detection</subject><subject>Information security</subject><subject>Performance analysis</subject><subject>Privacy</subject><subject>Product codes</subject><subject>Radio frequency</subject><subject>Radiofrequency identification</subject><subject>Scalability</subject><isbn>9781424442201</isbn><isbn>1424442206</isbn><isbn>9781424442218</isbn><isbn>1424442214</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMFKAzEUjEhBrfsB4mVvnnZ9L8luNkcpWguFXvZekuyLRLZZ2cSCf2-LvTiXmYFhGIaxB4QaEfTzZvXS1xxA142QncT2ihVadSi5lJJz7K7_ecAFuzvHNaCWcMOKlD7hBNlwAfyWbXaxGkOkko7TeAzxo3Tjd8o0n6Wf5tKHaKILZixTNpkOFHN6Kk2cDmYMlMqBMrkcpnjPFt6MiYoLL1n_9tqv3qvtbn1ava2Chlxpj0pxDcLzVkgu9Glaqzji0BnrrFZC2rYxxBVa7QdvnQPrEKBrSSmrxJI9_tUGItp_zeFg5p_95QzxC7juUBo</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Omanovic, S.</creator><creator>Avdagic, Z.</creator><creator>Konjicija, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>On-line evolving clustering for financial statements' anomalies detection</title><author>Omanovic, S. ; Avdagic, Z. ; Konjicija, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9f1772903f263423909967211d8abcb9734b65ae271b9fdfbcc0bc10086e77b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>anomalies detection</topic><topic>Authentication</topic><topic>Data security</topic><topic>evolving clustering</topic><topic>fraud detection</topic><topic>Information security</topic><topic>Performance analysis</topic><topic>Privacy</topic><topic>Product codes</topic><topic>Radio frequency</topic><topic>Radiofrequency identification</topic><topic>Scalability</topic><toplevel>online_resources</toplevel><creatorcontrib>Omanovic, S.</creatorcontrib><creatorcontrib>Avdagic, Z.</creatorcontrib><creatorcontrib>Konjicija, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Omanovic, S.</au><au>Avdagic, Z.</au><au>Konjicija, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On-line evolving clustering for financial statements' anomalies detection</atitle><btitle>2009 XXII International Symposium on Information, Communication and Automation Technologies</btitle><stitle>ICAT</stitle><date>2009-10</date><risdate>2009</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781424442201</isbn><isbn>1424442206</isbn><eisbn>9781424442218</eisbn><eisbn>1424442214</eisbn><abstract>This document proposes an approach for financial statements' anomalies detection by using on-line evolving clustering. Official records of the financial activities of a business are called financial statements and they are recorded in journals and general ledger in a supervised process. Anomalies in financial statements are caused by human mistakes during forming of financial statements, or as a result of changes in the software that produced un-expected errors, or as possible financial fraud.</abstract><pub>IEEE</pub><doi>10.1109/ICAT.2009.5348416</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424442201
ispartof 2009 XXII International Symposium on Information, Communication and Automation Technologies, 2009, p.1-4
issn
language eng
recordid cdi_ieee_primary_5348416
source IEEE Electronic Library (IEL) Conference Proceedings
subjects anomalies detection
Authentication
Data security
evolving clustering
fraud detection
Information security
Performance analysis
Privacy
Product codes
Radio frequency
Radiofrequency identification
Scalability
title On-line evolving clustering for financial statements' anomalies detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On-line%20evolving%20clustering%20for%20financial%20statements'%20anomalies%20detection&rft.btitle=2009%20XXII%20International%20Symposium%20on%20Information,%20Communication%20and%20Automation%20Technologies&rft.au=Omanovic,%20S.&rft.date=2009-10&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781424442201&rft.isbn_list=1424442206&rft_id=info:doi/10.1109/ICAT.2009.5348416&rft_dat=%3Cieee_6IE%3E5348416%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442218&rft.eisbn_list=1424442214&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5348416&rfr_iscdi=true