On-line evolving clustering for financial statements' anomalies detection
This document proposes an approach for financial statements' anomalies detection by using on-line evolving clustering. Official records of the financial activities of a business are called financial statements and they are recorded in journals and general ledger in a supervised process. Anomali...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Omanovic, S. Avdagic, Z. Konjicija, S. |
description | This document proposes an approach for financial statements' anomalies detection by using on-line evolving clustering. Official records of the financial activities of a business are called financial statements and they are recorded in journals and general ledger in a supervised process. Anomalies in financial statements are caused by human mistakes during forming of financial statements, or as a result of changes in the software that produced un-expected errors, or as possible financial fraud. |
doi_str_mv | 10.1109/ICAT.2009.5348416 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5348416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5348416</ieee_id><sourcerecordid>5348416</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9f1772903f263423909967211d8abcb9734b65ae271b9fdfbcc0bc10086e77b73</originalsourceid><addsrcrecordid>eNpVUMFKAzEUjEhBrfsB4mVvnnZ9L8luNkcpWguFXvZekuyLRLZZ2cSCf2-LvTiXmYFhGIaxB4QaEfTzZvXS1xxA142QncT2ihVadSi5lJJz7K7_ecAFuzvHNaCWcMOKlD7hBNlwAfyWbXaxGkOkko7TeAzxo3Tjd8o0n6Wf5tKHaKILZixTNpkOFHN6Kk2cDmYMlMqBMrkcpnjPFt6MiYoLL1n_9tqv3qvtbn1ava2Chlxpj0pxDcLzVkgu9Glaqzji0BnrrFZC2rYxxBVa7QdvnQPrEKBrSSmrxJI9_tUGItp_zeFg5p_95QzxC7juUBo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On-line evolving clustering for financial statements' anomalies detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Omanovic, S. ; Avdagic, Z. ; Konjicija, S.</creator><creatorcontrib>Omanovic, S. ; Avdagic, Z. ; Konjicija, S.</creatorcontrib><description>This document proposes an approach for financial statements' anomalies detection by using on-line evolving clustering. Official records of the financial activities of a business are called financial statements and they are recorded in journals and general ledger in a supervised process. Anomalies in financial statements are caused by human mistakes during forming of financial statements, or as a result of changes in the software that produced un-expected errors, or as possible financial fraud.</description><identifier>ISBN: 9781424442201</identifier><identifier>ISBN: 1424442206</identifier><identifier>EISBN: 9781424442218</identifier><identifier>EISBN: 1424442214</identifier><identifier>DOI: 10.1109/ICAT.2009.5348416</identifier><identifier>LCCN: 2009901940</identifier><language>eng</language><publisher>IEEE</publisher><subject>anomalies detection ; Authentication ; Data security ; evolving clustering ; fraud detection ; Information security ; Performance analysis ; Privacy ; Product codes ; Radio frequency ; Radiofrequency identification ; Scalability</subject><ispartof>2009 XXII International Symposium on Information, Communication and Automation Technologies, 2009, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5348416$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5348416$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Omanovic, S.</creatorcontrib><creatorcontrib>Avdagic, Z.</creatorcontrib><creatorcontrib>Konjicija, S.</creatorcontrib><title>On-line evolving clustering for financial statements' anomalies detection</title><title>2009 XXII International Symposium on Information, Communication and Automation Technologies</title><addtitle>ICAT</addtitle><description>This document proposes an approach for financial statements' anomalies detection by using on-line evolving clustering. Official records of the financial activities of a business are called financial statements and they are recorded in journals and general ledger in a supervised process. Anomalies in financial statements are caused by human mistakes during forming of financial statements, or as a result of changes in the software that produced un-expected errors, or as possible financial fraud.</description><subject>anomalies detection</subject><subject>Authentication</subject><subject>Data security</subject><subject>evolving clustering</subject><subject>fraud detection</subject><subject>Information security</subject><subject>Performance analysis</subject><subject>Privacy</subject><subject>Product codes</subject><subject>Radio frequency</subject><subject>Radiofrequency identification</subject><subject>Scalability</subject><isbn>9781424442201</isbn><isbn>1424442206</isbn><isbn>9781424442218</isbn><isbn>1424442214</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMFKAzEUjEhBrfsB4mVvnnZ9L8luNkcpWguFXvZekuyLRLZZ2cSCf2-LvTiXmYFhGIaxB4QaEfTzZvXS1xxA142QncT2ihVadSi5lJJz7K7_ecAFuzvHNaCWcMOKlD7hBNlwAfyWbXaxGkOkko7TeAzxo3Tjd8o0n6Wf5tKHaKILZixTNpkOFHN6Kk2cDmYMlMqBMrkcpnjPFt6MiYoLL1n_9tqv3qvtbn1ava2Chlxpj0pxDcLzVkgu9Glaqzji0BnrrFZC2rYxxBVa7QdvnQPrEKBrSSmrxJI9_tUGItp_zeFg5p_95QzxC7juUBo</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Omanovic, S.</creator><creator>Avdagic, Z.</creator><creator>Konjicija, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>On-line evolving clustering for financial statements' anomalies detection</title><author>Omanovic, S. ; Avdagic, Z. ; Konjicija, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9f1772903f263423909967211d8abcb9734b65ae271b9fdfbcc0bc10086e77b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>anomalies detection</topic><topic>Authentication</topic><topic>Data security</topic><topic>evolving clustering</topic><topic>fraud detection</topic><topic>Information security</topic><topic>Performance analysis</topic><topic>Privacy</topic><topic>Product codes</topic><topic>Radio frequency</topic><topic>Radiofrequency identification</topic><topic>Scalability</topic><toplevel>online_resources</toplevel><creatorcontrib>Omanovic, S.</creatorcontrib><creatorcontrib>Avdagic, Z.</creatorcontrib><creatorcontrib>Konjicija, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Omanovic, S.</au><au>Avdagic, Z.</au><au>Konjicija, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On-line evolving clustering for financial statements' anomalies detection</atitle><btitle>2009 XXII International Symposium on Information, Communication and Automation Technologies</btitle><stitle>ICAT</stitle><date>2009-10</date><risdate>2009</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781424442201</isbn><isbn>1424442206</isbn><eisbn>9781424442218</eisbn><eisbn>1424442214</eisbn><abstract>This document proposes an approach for financial statements' anomalies detection by using on-line evolving clustering. Official records of the financial activities of a business are called financial statements and they are recorded in journals and general ledger in a supervised process. Anomalies in financial statements are caused by human mistakes during forming of financial statements, or as a result of changes in the software that produced un-expected errors, or as possible financial fraud.</abstract><pub>IEEE</pub><doi>10.1109/ICAT.2009.5348416</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424442201 |
ispartof | 2009 XXII International Symposium on Information, Communication and Automation Technologies, 2009, p.1-4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5348416 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | anomalies detection Authentication Data security evolving clustering fraud detection Information security Performance analysis Privacy Product codes Radio frequency Radiofrequency identification Scalability |
title | On-line evolving clustering for financial statements' anomalies detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On-line%20evolving%20clustering%20for%20financial%20statements'%20anomalies%20detection&rft.btitle=2009%20XXII%20International%20Symposium%20on%20Information,%20Communication%20and%20Automation%20Technologies&rft.au=Omanovic,%20S.&rft.date=2009-10&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781424442201&rft.isbn_list=1424442206&rft_id=info:doi/10.1109/ICAT.2009.5348416&rft_dat=%3Cieee_6IE%3E5348416%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442218&rft.eisbn_list=1424442214&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5348416&rfr_iscdi=true |