Application of improved adding-weight one-rank local-region method in electric power system short-term load forecasting

Adding-weight one-rank local-region method makes too many computations and cumulative errors while carrying out multi-step predictions, an improved adding-weight one-rank local-region forecasting model is presented in this paper. According to the prediction effectiveness of Euclid distance between t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kang Si-min, Guo Ying-na, Cheng Wei-bin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Kang Si-min
Guo Ying-na
Cheng Wei-bin
description Adding-weight one-rank local-region method makes too many computations and cumulative errors while carrying out multi-step predictions, an improved adding-weight one-rank local-region forecasting model is presented in this paper. According to the prediction effectiveness of Euclid distance between two points away from prediction point in phase space, and synthetically taking into account the effect of distance and degree of incidence between nearest neighbor points and prediction point, an improved prediction is maken with weighted evolution of the neighbor points historically and the evolution of the center reference point to forecast next point directly. The results show that the improved model for short-term load not only reduce forecasting error, but also improve calculation speed. It is a novel prediction method for chaotic time series, and worth to be studied deeply.
doi_str_mv 10.1109/SUPERGEN.2009.5347941
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5347941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5347941</ieee_id><sourcerecordid>5347941</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-97cbdb6bd161fcd3fd42413ce702420972d84d7ea9051ebd554437773bdebc8f3</originalsourceid><addsrcrecordid>eNotkM1KAzEUhQMqWGufQIS8QOrNz0yaZSm1CkVF67pkkjttdGYyZIKlb2_Frs7mOx-cQ8g9hynnYB4-Pt-W76vly1QAmGkhlTaKX5AbroRSykgFl2QkeFEyU874NZkMwxcASAGyABiRw7zvm-BsDrGjsaah7VP8QU-t96HbsQOG3T7T2CFLtvumTXS2YQl3f3yLeR89DR3FBl1OwdE-HjDR4ThkbOmwjymzjKk99ayndUzo7JBP4ltyVdtmwMk5x2TzuNwsntj6dfW8mK9ZMJCZ0a7yVVl5XvLaeVn70ywuHWoQSoDRws-U12gNFBwrXxRKSa21rDxWblbLMbn71wZE3PYptDYdt-eb5C-Sw2AJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of improved adding-weight one-rank local-region method in electric power system short-term load forecasting</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kang Si-min ; Guo Ying-na ; Cheng Wei-bin</creator><creatorcontrib>Kang Si-min ; Guo Ying-na ; Cheng Wei-bin</creatorcontrib><description>Adding-weight one-rank local-region method makes too many computations and cumulative errors while carrying out multi-step predictions, an improved adding-weight one-rank local-region forecasting model is presented in this paper. According to the prediction effectiveness of Euclid distance between two points away from prediction point in phase space, and synthetically taking into account the effect of distance and degree of incidence between nearest neighbor points and prediction point, an improved prediction is maken with weighted evolution of the neighbor points historically and the evolution of the center reference point to forecast next point directly. The results show that the improved model for short-term load not only reduce forecasting error, but also improve calculation speed. It is a novel prediction method for chaotic time series, and worth to be studied deeply.</description><identifier>ISSN: 2156-9681</identifier><identifier>ISBN: 1424449340</identifier><identifier>ISBN: 9781424449347</identifier><identifier>DOI: 10.1109/SUPERGEN.2009.5347941</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adding-weight one-rank local-region method ; C-C method ; Chaos ; Chaotic time series ; Delay effects ; Economic forecasting ; Largest Lyapunov exponent ; Load forecasting ; Load modeling ; Power generation economics ; Power system ; Power system modeling ; Power system planning ; Power system security ; Predictive models ; Reconstruction of phase space</subject><ispartof>2009 International Conference on Sustainable Power Generation and Supply, 2009, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5347941$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5347941$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kang Si-min</creatorcontrib><creatorcontrib>Guo Ying-na</creatorcontrib><creatorcontrib>Cheng Wei-bin</creatorcontrib><title>Application of improved adding-weight one-rank local-region method in electric power system short-term load forecasting</title><title>2009 International Conference on Sustainable Power Generation and Supply</title><addtitle>SUPERGEN</addtitle><description>Adding-weight one-rank local-region method makes too many computations and cumulative errors while carrying out multi-step predictions, an improved adding-weight one-rank local-region forecasting model is presented in this paper. According to the prediction effectiveness of Euclid distance between two points away from prediction point in phase space, and synthetically taking into account the effect of distance and degree of incidence between nearest neighbor points and prediction point, an improved prediction is maken with weighted evolution of the neighbor points historically and the evolution of the center reference point to forecast next point directly. The results show that the improved model for short-term load not only reduce forecasting error, but also improve calculation speed. It is a novel prediction method for chaotic time series, and worth to be studied deeply.</description><subject>Adding-weight one-rank local-region method</subject><subject>C-C method</subject><subject>Chaos</subject><subject>Chaotic time series</subject><subject>Delay effects</subject><subject>Economic forecasting</subject><subject>Largest Lyapunov exponent</subject><subject>Load forecasting</subject><subject>Load modeling</subject><subject>Power generation economics</subject><subject>Power system</subject><subject>Power system modeling</subject><subject>Power system planning</subject><subject>Power system security</subject><subject>Predictive models</subject><subject>Reconstruction of phase space</subject><issn>2156-9681</issn><isbn>1424449340</isbn><isbn>9781424449347</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM1KAzEUhQMqWGufQIS8QOrNz0yaZSm1CkVF67pkkjttdGYyZIKlb2_Frs7mOx-cQ8g9hynnYB4-Pt-W76vly1QAmGkhlTaKX5AbroRSykgFl2QkeFEyU874NZkMwxcASAGyABiRw7zvm-BsDrGjsaah7VP8QU-t96HbsQOG3T7T2CFLtvumTXS2YQl3f3yLeR89DR3FBl1OwdE-HjDR4ThkbOmwjymzjKk99ayndUzo7JBP4ltyVdtmwMk5x2TzuNwsntj6dfW8mK9ZMJCZ0a7yVVl5XvLaeVn70ywuHWoQSoDRws-U12gNFBwrXxRKSa21rDxWblbLMbn71wZE3PYptDYdt-eb5C-Sw2AJ</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Kang Si-min</creator><creator>Guo Ying-na</creator><creator>Cheng Wei-bin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200904</creationdate><title>Application of improved adding-weight one-rank local-region method in electric power system short-term load forecasting</title><author>Kang Si-min ; Guo Ying-na ; Cheng Wei-bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-97cbdb6bd161fcd3fd42413ce702420972d84d7ea9051ebd554437773bdebc8f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adding-weight one-rank local-region method</topic><topic>C-C method</topic><topic>Chaos</topic><topic>Chaotic time series</topic><topic>Delay effects</topic><topic>Economic forecasting</topic><topic>Largest Lyapunov exponent</topic><topic>Load forecasting</topic><topic>Load modeling</topic><topic>Power generation economics</topic><topic>Power system</topic><topic>Power system modeling</topic><topic>Power system planning</topic><topic>Power system security</topic><topic>Predictive models</topic><topic>Reconstruction of phase space</topic><toplevel>online_resources</toplevel><creatorcontrib>Kang Si-min</creatorcontrib><creatorcontrib>Guo Ying-na</creatorcontrib><creatorcontrib>Cheng Wei-bin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kang Si-min</au><au>Guo Ying-na</au><au>Cheng Wei-bin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of improved adding-weight one-rank local-region method in electric power system short-term load forecasting</atitle><btitle>2009 International Conference on Sustainable Power Generation and Supply</btitle><stitle>SUPERGEN</stitle><date>2009-04</date><risdate>2009</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2156-9681</issn><isbn>1424449340</isbn><isbn>9781424449347</isbn><abstract>Adding-weight one-rank local-region method makes too many computations and cumulative errors while carrying out multi-step predictions, an improved adding-weight one-rank local-region forecasting model is presented in this paper. According to the prediction effectiveness of Euclid distance between two points away from prediction point in phase space, and synthetically taking into account the effect of distance and degree of incidence between nearest neighbor points and prediction point, an improved prediction is maken with weighted evolution of the neighbor points historically and the evolution of the center reference point to forecast next point directly. The results show that the improved model for short-term load not only reduce forecasting error, but also improve calculation speed. It is a novel prediction method for chaotic time series, and worth to be studied deeply.</abstract><pub>IEEE</pub><doi>10.1109/SUPERGEN.2009.5347941</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-9681
ispartof 2009 International Conference on Sustainable Power Generation and Supply, 2009, p.1-4
issn 2156-9681
language eng
recordid cdi_ieee_primary_5347941
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adding-weight one-rank local-region method
C-C method
Chaos
Chaotic time series
Delay effects
Economic forecasting
Largest Lyapunov exponent
Load forecasting
Load modeling
Power generation economics
Power system
Power system modeling
Power system planning
Power system security
Predictive models
Reconstruction of phase space
title Application of improved adding-weight one-rank local-region method in electric power system short-term load forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20improved%20adding-weight%20one-rank%20local-region%20method%20in%20electric%20power%20system%20short-term%20load%20forecasting&rft.btitle=2009%20International%20Conference%20on%20Sustainable%20Power%20Generation%20and%20Supply&rft.au=Kang%20Si-min&rft.date=2009-04&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2156-9681&rft.isbn=1424449340&rft.isbn_list=9781424449347&rft_id=info:doi/10.1109/SUPERGEN.2009.5347941&rft_dat=%3Cieee_6IE%3E5347941%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5347941&rfr_iscdi=true