On estimation of unknown state variables in wastewater systems

This paper focuses on the estimation of the non-measurable physical states of wastewater systems when nonlinear models with uncertainties describe the processes. The Activated Sludge Process (ASP), as the most commonly applied biological wastewater purification technique, attracts a great deal of at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Iratni, A., Katebi, R., Vilanova, R., Mostefai, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Iratni, A.
Katebi, R.
Vilanova, R.
Mostefai, M.
description This paper focuses on the estimation of the non-measurable physical states of wastewater systems when nonlinear models with uncertainties describe the processes. The Activated Sludge Process (ASP), as the most commonly applied biological wastewater purification technique, attracts a great deal of attention from the research community. We developed for this class of processes a State Dependent Differential Riccati Filter (SDDRF) for state estimation of nonlinear model describing the system. The resulting software sensor is simple to implement and has a relatively low computational cost. The results are compared with the Extended Kalman Filter (EKF) in order to demonstrate the better performance of the SDDRF filter. The filter allows the on-line tracking of process variables, which are not directly measurable. The simulation results point out to the advantage of using this approach.
doi_str_mv 10.1109/ETFA.2009.5347055
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5347055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5347055</ieee_id><sourcerecordid>5347055</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-db10954e7a54b82ba55e725354787445b7cd928b27d02ab1d8b2934f324be0fd3</originalsourceid><addsrcrecordid>eNpVkN1Kw0AQhdefgrXmAcSbfYHE_ZnJZG-EUloVCr2p12XXbCDaJpJdDX17F1oE5-YczgeHmWHsXopCSmEel9vVvFBCmAI1kEC8YJmhSoICUKQquGRTaaDMBaG5-seIrv8YiAm7TTWVEWVJ5Q3LQvgQaQC1LGHKnjYd9yG2BxvbvuN9w7-7z64fOx6ijZ7_2KG1bu8Dbzs-2hD9mOKBh2Oyh3DHJo3dB5-ddcbeVsvt4iVfb55fF_N13krCmNcu3YTgySK4SjmL6EmhRqCKANDRe21U5RTVQlkn62SNhkYrcF40tZ6xh1Nv673ffQ1p3-G4O79G_wLIT1BF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On estimation of unknown state variables in wastewater systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Iratni, A. ; Katebi, R. ; Vilanova, R. ; Mostefai, M.</creator><creatorcontrib>Iratni, A. ; Katebi, R. ; Vilanova, R. ; Mostefai, M.</creatorcontrib><description>This paper focuses on the estimation of the non-measurable physical states of wastewater systems when nonlinear models with uncertainties describe the processes. The Activated Sludge Process (ASP), as the most commonly applied biological wastewater purification technique, attracts a great deal of attention from the research community. We developed for this class of processes a State Dependent Differential Riccati Filter (SDDRF) for state estimation of nonlinear model describing the system. The resulting software sensor is simple to implement and has a relatively low computational cost. The results are compared with the Extended Kalman Filter (EKF) in order to demonstrate the better performance of the SDDRF filter. The filter allows the on-line tracking of process variables, which are not directly measurable. The simulation results point out to the advantage of using this approach.</description><identifier>ISSN: 1946-0740</identifier><identifier>ISBN: 9781424427277</identifier><identifier>ISBN: 1424427274</identifier><identifier>EISSN: 1946-0759</identifier><identifier>EISBN: 9781424427284</identifier><identifier>EISBN: 1424427282</identifier><identifier>DOI: 10.1109/ETFA.2009.5347055</identifier><identifier>LCCN: 2008906676</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application specific processors ; Biological system modeling ; Filters ; Purification ; Riccati equations ; Sludge treatment ; Software systems ; State estimation ; Uncertainty ; Wastewater</subject><ispartof>2009 IEEE Conference on Emerging Technologies &amp; Factory Automation, 2009, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5347055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5347055$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Iratni, A.</creatorcontrib><creatorcontrib>Katebi, R.</creatorcontrib><creatorcontrib>Vilanova, R.</creatorcontrib><creatorcontrib>Mostefai, M.</creatorcontrib><title>On estimation of unknown state variables in wastewater systems</title><title>2009 IEEE Conference on Emerging Technologies &amp; Factory Automation</title><addtitle>ETFA</addtitle><description>This paper focuses on the estimation of the non-measurable physical states of wastewater systems when nonlinear models with uncertainties describe the processes. The Activated Sludge Process (ASP), as the most commonly applied biological wastewater purification technique, attracts a great deal of attention from the research community. We developed for this class of processes a State Dependent Differential Riccati Filter (SDDRF) for state estimation of nonlinear model describing the system. The resulting software sensor is simple to implement and has a relatively low computational cost. The results are compared with the Extended Kalman Filter (EKF) in order to demonstrate the better performance of the SDDRF filter. The filter allows the on-line tracking of process variables, which are not directly measurable. The simulation results point out to the advantage of using this approach.</description><subject>Application specific processors</subject><subject>Biological system modeling</subject><subject>Filters</subject><subject>Purification</subject><subject>Riccati equations</subject><subject>Sludge treatment</subject><subject>Software systems</subject><subject>State estimation</subject><subject>Uncertainty</subject><subject>Wastewater</subject><issn>1946-0740</issn><issn>1946-0759</issn><isbn>9781424427277</isbn><isbn>1424427274</isbn><isbn>9781424427284</isbn><isbn>1424427282</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkN1Kw0AQhdefgrXmAcSbfYHE_ZnJZG-EUloVCr2p12XXbCDaJpJdDX17F1oE5-YczgeHmWHsXopCSmEel9vVvFBCmAI1kEC8YJmhSoICUKQquGRTaaDMBaG5-seIrv8YiAm7TTWVEWVJ5Q3LQvgQaQC1LGHKnjYd9yG2BxvbvuN9w7-7z64fOx6ijZ7_2KG1bu8Dbzs-2hD9mOKBh2Oyh3DHJo3dB5-ddcbeVsvt4iVfb55fF_N13krCmNcu3YTgySK4SjmL6EmhRqCKANDRe21U5RTVQlkn62SNhkYrcF40tZ6xh1Nv673ffQ1p3-G4O79G_wLIT1BF</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Iratni, A.</creator><creator>Katebi, R.</creator><creator>Vilanova, R.</creator><creator>Mostefai, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>On estimation of unknown state variables in wastewater systems</title><author>Iratni, A. ; Katebi, R. ; Vilanova, R. ; Mostefai, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-db10954e7a54b82ba55e725354787445b7cd928b27d02ab1d8b2934f324be0fd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Application specific processors</topic><topic>Biological system modeling</topic><topic>Filters</topic><topic>Purification</topic><topic>Riccati equations</topic><topic>Sludge treatment</topic><topic>Software systems</topic><topic>State estimation</topic><topic>Uncertainty</topic><topic>Wastewater</topic><toplevel>online_resources</toplevel><creatorcontrib>Iratni, A.</creatorcontrib><creatorcontrib>Katebi, R.</creatorcontrib><creatorcontrib>Vilanova, R.</creatorcontrib><creatorcontrib>Mostefai, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iratni, A.</au><au>Katebi, R.</au><au>Vilanova, R.</au><au>Mostefai, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On estimation of unknown state variables in wastewater systems</atitle><btitle>2009 IEEE Conference on Emerging Technologies &amp; Factory Automation</btitle><stitle>ETFA</stitle><date>2009-09</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1946-0740</issn><eissn>1946-0759</eissn><isbn>9781424427277</isbn><isbn>1424427274</isbn><eisbn>9781424427284</eisbn><eisbn>1424427282</eisbn><abstract>This paper focuses on the estimation of the non-measurable physical states of wastewater systems when nonlinear models with uncertainties describe the processes. The Activated Sludge Process (ASP), as the most commonly applied biological wastewater purification technique, attracts a great deal of attention from the research community. We developed for this class of processes a State Dependent Differential Riccati Filter (SDDRF) for state estimation of nonlinear model describing the system. The resulting software sensor is simple to implement and has a relatively low computational cost. The results are compared with the Extended Kalman Filter (EKF) in order to demonstrate the better performance of the SDDRF filter. The filter allows the on-line tracking of process variables, which are not directly measurable. The simulation results point out to the advantage of using this approach.</abstract><pub>IEEE</pub><doi>10.1109/ETFA.2009.5347055</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1946-0740
ispartof 2009 IEEE Conference on Emerging Technologies & Factory Automation, 2009, p.1-6
issn 1946-0740
1946-0759
language eng
recordid cdi_ieee_primary_5347055
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application specific processors
Biological system modeling
Filters
Purification
Riccati equations
Sludge treatment
Software systems
State estimation
Uncertainty
Wastewater
title On estimation of unknown state variables in wastewater systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20estimation%20of%20unknown%20state%20variables%20in%20wastewater%20systems&rft.btitle=2009%20IEEE%20Conference%20on%20Emerging%20Technologies%20&%20Factory%20Automation&rft.au=Iratni,%20A.&rft.date=2009-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1946-0740&rft.eissn=1946-0759&rft.isbn=9781424427277&rft.isbn_list=1424427274&rft_id=info:doi/10.1109/ETFA.2009.5347055&rft_dat=%3Cieee_6IE%3E5347055%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424427284&rft.eisbn_list=1424427282&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5347055&rfr_iscdi=true