On estimation of unknown state variables in wastewater systems
This paper focuses on the estimation of the non-measurable physical states of wastewater systems when nonlinear models with uncertainties describe the processes. The Activated Sludge Process (ASP), as the most commonly applied biological wastewater purification technique, attracts a great deal of at...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Iratni, A. Katebi, R. Vilanova, R. Mostefai, M. |
description | This paper focuses on the estimation of the non-measurable physical states of wastewater systems when nonlinear models with uncertainties describe the processes. The Activated Sludge Process (ASP), as the most commonly applied biological wastewater purification technique, attracts a great deal of attention from the research community. We developed for this class of processes a State Dependent Differential Riccati Filter (SDDRF) for state estimation of nonlinear model describing the system. The resulting software sensor is simple to implement and has a relatively low computational cost. The results are compared with the Extended Kalman Filter (EKF) in order to demonstrate the better performance of the SDDRF filter. The filter allows the on-line tracking of process variables, which are not directly measurable. The simulation results point out to the advantage of using this approach. |
doi_str_mv | 10.1109/ETFA.2009.5347055 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5347055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5347055</ieee_id><sourcerecordid>5347055</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-db10954e7a54b82ba55e725354787445b7cd928b27d02ab1d8b2934f324be0fd3</originalsourceid><addsrcrecordid>eNpVkN1Kw0AQhdefgrXmAcSbfYHE_ZnJZG-EUloVCr2p12XXbCDaJpJdDX17F1oE5-YczgeHmWHsXopCSmEel9vVvFBCmAI1kEC8YJmhSoICUKQquGRTaaDMBaG5-seIrv8YiAm7TTWVEWVJ5Q3LQvgQaQC1LGHKnjYd9yG2BxvbvuN9w7-7z64fOx6ijZ7_2KG1bu8Dbzs-2hD9mOKBh2Oyh3DHJo3dB5-ddcbeVsvt4iVfb55fF_N13krCmNcu3YTgySK4SjmL6EmhRqCKANDRe21U5RTVQlkn62SNhkYrcF40tZ6xh1Nv673ffQ1p3-G4O79G_wLIT1BF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On estimation of unknown state variables in wastewater systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Iratni, A. ; Katebi, R. ; Vilanova, R. ; Mostefai, M.</creator><creatorcontrib>Iratni, A. ; Katebi, R. ; Vilanova, R. ; Mostefai, M.</creatorcontrib><description>This paper focuses on the estimation of the non-measurable physical states of wastewater systems when nonlinear models with uncertainties describe the processes. The Activated Sludge Process (ASP), as the most commonly applied biological wastewater purification technique, attracts a great deal of attention from the research community. We developed for this class of processes a State Dependent Differential Riccati Filter (SDDRF) for state estimation of nonlinear model describing the system. The resulting software sensor is simple to implement and has a relatively low computational cost. The results are compared with the Extended Kalman Filter (EKF) in order to demonstrate the better performance of the SDDRF filter. The filter allows the on-line tracking of process variables, which are not directly measurable. The simulation results point out to the advantage of using this approach.</description><identifier>ISSN: 1946-0740</identifier><identifier>ISBN: 9781424427277</identifier><identifier>ISBN: 1424427274</identifier><identifier>EISSN: 1946-0759</identifier><identifier>EISBN: 9781424427284</identifier><identifier>EISBN: 1424427282</identifier><identifier>DOI: 10.1109/ETFA.2009.5347055</identifier><identifier>LCCN: 2008906676</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application specific processors ; Biological system modeling ; Filters ; Purification ; Riccati equations ; Sludge treatment ; Software systems ; State estimation ; Uncertainty ; Wastewater</subject><ispartof>2009 IEEE Conference on Emerging Technologies & Factory Automation, 2009, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5347055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5347055$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Iratni, A.</creatorcontrib><creatorcontrib>Katebi, R.</creatorcontrib><creatorcontrib>Vilanova, R.</creatorcontrib><creatorcontrib>Mostefai, M.</creatorcontrib><title>On estimation of unknown state variables in wastewater systems</title><title>2009 IEEE Conference on Emerging Technologies & Factory Automation</title><addtitle>ETFA</addtitle><description>This paper focuses on the estimation of the non-measurable physical states of wastewater systems when nonlinear models with uncertainties describe the processes. The Activated Sludge Process (ASP), as the most commonly applied biological wastewater purification technique, attracts a great deal of attention from the research community. We developed for this class of processes a State Dependent Differential Riccati Filter (SDDRF) for state estimation of nonlinear model describing the system. The resulting software sensor is simple to implement and has a relatively low computational cost. The results are compared with the Extended Kalman Filter (EKF) in order to demonstrate the better performance of the SDDRF filter. The filter allows the on-line tracking of process variables, which are not directly measurable. The simulation results point out to the advantage of using this approach.</description><subject>Application specific processors</subject><subject>Biological system modeling</subject><subject>Filters</subject><subject>Purification</subject><subject>Riccati equations</subject><subject>Sludge treatment</subject><subject>Software systems</subject><subject>State estimation</subject><subject>Uncertainty</subject><subject>Wastewater</subject><issn>1946-0740</issn><issn>1946-0759</issn><isbn>9781424427277</isbn><isbn>1424427274</isbn><isbn>9781424427284</isbn><isbn>1424427282</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkN1Kw0AQhdefgrXmAcSbfYHE_ZnJZG-EUloVCr2p12XXbCDaJpJdDX17F1oE5-YczgeHmWHsXopCSmEel9vVvFBCmAI1kEC8YJmhSoICUKQquGRTaaDMBaG5-seIrv8YiAm7TTWVEWVJ5Q3LQvgQaQC1LGHKnjYd9yG2BxvbvuN9w7-7z64fOx6ijZ7_2KG1bu8Dbzs-2hD9mOKBh2Oyh3DHJo3dB5-ddcbeVsvt4iVfb55fF_N13krCmNcu3YTgySK4SjmL6EmhRqCKANDRe21U5RTVQlkn62SNhkYrcF40tZ6xh1Nv673ffQ1p3-G4O79G_wLIT1BF</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Iratni, A.</creator><creator>Katebi, R.</creator><creator>Vilanova, R.</creator><creator>Mostefai, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>On estimation of unknown state variables in wastewater systems</title><author>Iratni, A. ; Katebi, R. ; Vilanova, R. ; Mostefai, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-db10954e7a54b82ba55e725354787445b7cd928b27d02ab1d8b2934f324be0fd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Application specific processors</topic><topic>Biological system modeling</topic><topic>Filters</topic><topic>Purification</topic><topic>Riccati equations</topic><topic>Sludge treatment</topic><topic>Software systems</topic><topic>State estimation</topic><topic>Uncertainty</topic><topic>Wastewater</topic><toplevel>online_resources</toplevel><creatorcontrib>Iratni, A.</creatorcontrib><creatorcontrib>Katebi, R.</creatorcontrib><creatorcontrib>Vilanova, R.</creatorcontrib><creatorcontrib>Mostefai, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iratni, A.</au><au>Katebi, R.</au><au>Vilanova, R.</au><au>Mostefai, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On estimation of unknown state variables in wastewater systems</atitle><btitle>2009 IEEE Conference on Emerging Technologies & Factory Automation</btitle><stitle>ETFA</stitle><date>2009-09</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1946-0740</issn><eissn>1946-0759</eissn><isbn>9781424427277</isbn><isbn>1424427274</isbn><eisbn>9781424427284</eisbn><eisbn>1424427282</eisbn><abstract>This paper focuses on the estimation of the non-measurable physical states of wastewater systems when nonlinear models with uncertainties describe the processes. The Activated Sludge Process (ASP), as the most commonly applied biological wastewater purification technique, attracts a great deal of attention from the research community. We developed for this class of processes a State Dependent Differential Riccati Filter (SDDRF) for state estimation of nonlinear model describing the system. The resulting software sensor is simple to implement and has a relatively low computational cost. The results are compared with the Extended Kalman Filter (EKF) in order to demonstrate the better performance of the SDDRF filter. The filter allows the on-line tracking of process variables, which are not directly measurable. The simulation results point out to the advantage of using this approach.</abstract><pub>IEEE</pub><doi>10.1109/ETFA.2009.5347055</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1946-0740 |
ispartof | 2009 IEEE Conference on Emerging Technologies & Factory Automation, 2009, p.1-6 |
issn | 1946-0740 1946-0759 |
language | eng |
recordid | cdi_ieee_primary_5347055 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application specific processors Biological system modeling Filters Purification Riccati equations Sludge treatment Software systems State estimation Uncertainty Wastewater |
title | On estimation of unknown state variables in wastewater systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20estimation%20of%20unknown%20state%20variables%20in%20wastewater%20systems&rft.btitle=2009%20IEEE%20Conference%20on%20Emerging%20Technologies%20&%20Factory%20Automation&rft.au=Iratni,%20A.&rft.date=2009-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1946-0740&rft.eissn=1946-0759&rft.isbn=9781424427277&rft.isbn_list=1424427274&rft_id=info:doi/10.1109/ETFA.2009.5347055&rft_dat=%3Cieee_6IE%3E5347055%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424427284&rft.eisbn_list=1424427282&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5347055&rfr_iscdi=true |