Modeling strategy by adaptive genetic algorithm for production reactive scheduling with simultaneous use of machines and AGVs

The problem of production scheduling of manufacturing systems is characterized by the large number of possible solutions. Several researches have been using the Genetic Algorithms (GA) as a search method to solve this problem since these algorithms have the capacity of globally exploring the search...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Morandin, O., Kato, E. R. R., Sanches, D. S., Muniz, B. D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 709
container_issue
container_start_page 704
container_title
container_volume
creator Morandin, O.
Kato, E. R. R.
Sanches, D. S.
Muniz, B. D.
description The problem of production scheduling of manufacturing systems is characterized by the large number of possible solutions. Several researches have been using the Genetic Algorithms (GA) as a search method to solve this problem since these algorithms have the capacity of globally exploring the search space and find good solutions quickly. Since the performance of the GA is directly related to the choice of the parameters of genetic operators, and a bad choice can depreciate the performance, this paper proposes the use of Adaptive Genetic Algorithm to solve this kind of scheduling problem considering the machines and the Automated Guided Vehicles (AGVs). The aim of this paper is to get a good production reactive schedule in order to achieve a good makespan value in a low response obtaining time. The results of this paper were validated in large scenarios and compared with the results of two other approaches. These results are presented and discussed in this paper.
doi_str_mv 10.1109/ICSMC.2009.5346695
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5346695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5346695</ieee_id><sourcerecordid>5346695</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-75f8f2be7548d06a18fb43cf18d508fcc2b5de69c2bd53a37324055f63f7550f3</originalsourceid><addsrcrecordid>eNpVkDlOAzEARc0SiSTkAtD4AhO8L2U0ghCJiIJFdJFnbE-MZonGHlAK7k4U0lC94j-94gNwg9EcY6TvVvnLOp8ThPScUyaE5mdgpqXCjDBGpGb6HIwJlzLDgvOLfxsll2CMkSCZJuRjBCaHjNJICIWuwCTGT4QIYliNwc-6s64ObQVj6k1y1R4We2is2aXw5WDlWpdCCU1ddX1I2wb6roe7vrNDmULXwt6Z8mjGcuvscCx9H0QYQzPUybSuGyIcooOdh40pt6F1EZrWwsXyPV6DkTd1dLMTp-Dt4f41f8yenperfPGUBSx5yiT3ypPCSc6URcJg5QtGS4-V5Uj5siQFt07oAy2nhkpKGOLcC-ol58jTKbj96wbn3GbXh8b0-83pVvoLGRRoMw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling strategy by adaptive genetic algorithm for production reactive scheduling with simultaneous use of machines and AGVs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Morandin, O. ; Kato, E. R. R. ; Sanches, D. S. ; Muniz, B. D.</creator><creatorcontrib>Morandin, O. ; Kato, E. R. R. ; Sanches, D. S. ; Muniz, B. D.</creatorcontrib><description>The problem of production scheduling of manufacturing systems is characterized by the large number of possible solutions. Several researches have been using the Genetic Algorithms (GA) as a search method to solve this problem since these algorithms have the capacity of globally exploring the search space and find good solutions quickly. Since the performance of the GA is directly related to the choice of the parameters of genetic operators, and a bad choice can depreciate the performance, this paper proposes the use of Adaptive Genetic Algorithm to solve this kind of scheduling problem considering the machines and the Automated Guided Vehicles (AGVs). The aim of this paper is to get a good production reactive schedule in order to achieve a good makespan value in a low response obtaining time. The results of this paper were validated in large scenarios and compared with the results of two other approaches. These results are presented and discussed in this paper.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 9781424427932</identifier><identifier>ISBN: 1424427932</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781424427949</identifier><identifier>EISBN: 1424427940</identifier><identifier>DOI: 10.1109/ICSMC.2009.5346695</identifier><identifier>LCCN: 2008906680</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive genetic algorithm ; automated guided vehicle ; Flexible manufacturing systems ; Genetic algorithms ; Job shop scheduling ; Manufacturing systems ; Optimal scheduling ; Processor scheduling ; Production systems ; scheduling ; Space exploration ; Transportation ; transportation systems ; Vehicles</subject><ispartof>2009 IEEE International Conference on Systems, Man and Cybernetics, 2009, p.704-709</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5346695$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5346695$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morandin, O.</creatorcontrib><creatorcontrib>Kato, E. R. R.</creatorcontrib><creatorcontrib>Sanches, D. S.</creatorcontrib><creatorcontrib>Muniz, B. D.</creatorcontrib><title>Modeling strategy by adaptive genetic algorithm for production reactive scheduling with simultaneous use of machines and AGVs</title><title>2009 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>The problem of production scheduling of manufacturing systems is characterized by the large number of possible solutions. Several researches have been using the Genetic Algorithms (GA) as a search method to solve this problem since these algorithms have the capacity of globally exploring the search space and find good solutions quickly. Since the performance of the GA is directly related to the choice of the parameters of genetic operators, and a bad choice can depreciate the performance, this paper proposes the use of Adaptive Genetic Algorithm to solve this kind of scheduling problem considering the machines and the Automated Guided Vehicles (AGVs). The aim of this paper is to get a good production reactive schedule in order to achieve a good makespan value in a low response obtaining time. The results of this paper were validated in large scenarios and compared with the results of two other approaches. These results are presented and discussed in this paper.</description><subject>adaptive genetic algorithm</subject><subject>automated guided vehicle</subject><subject>Flexible manufacturing systems</subject><subject>Genetic algorithms</subject><subject>Job shop scheduling</subject><subject>Manufacturing systems</subject><subject>Optimal scheduling</subject><subject>Processor scheduling</subject><subject>Production systems</subject><subject>scheduling</subject><subject>Space exploration</subject><subject>Transportation</subject><subject>transportation systems</subject><subject>Vehicles</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>9781424427932</isbn><isbn>1424427932</isbn><isbn>9781424427949</isbn><isbn>1424427940</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkDlOAzEARc0SiSTkAtD4AhO8L2U0ghCJiIJFdJFnbE-MZonGHlAK7k4U0lC94j-94gNwg9EcY6TvVvnLOp8ThPScUyaE5mdgpqXCjDBGpGb6HIwJlzLDgvOLfxsll2CMkSCZJuRjBCaHjNJICIWuwCTGT4QIYliNwc-6s64ObQVj6k1y1R4We2is2aXw5WDlWpdCCU1ddX1I2wb6roe7vrNDmULXwt6Z8mjGcuvscCx9H0QYQzPUybSuGyIcooOdh40pt6F1EZrWwsXyPV6DkTd1dLMTp-Dt4f41f8yenperfPGUBSx5yiT3ypPCSc6URcJg5QtGS4-V5Uj5siQFt07oAy2nhkpKGOLcC-ol58jTKbj96wbn3GbXh8b0-83pVvoLGRRoMw</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Morandin, O.</creator><creator>Kato, E. R. R.</creator><creator>Sanches, D. S.</creator><creator>Muniz, B. D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200910</creationdate><title>Modeling strategy by adaptive genetic algorithm for production reactive scheduling with simultaneous use of machines and AGVs</title><author>Morandin, O. ; Kato, E. R. R. ; Sanches, D. S. ; Muniz, B. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-75f8f2be7548d06a18fb43cf18d508fcc2b5de69c2bd53a37324055f63f7550f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>adaptive genetic algorithm</topic><topic>automated guided vehicle</topic><topic>Flexible manufacturing systems</topic><topic>Genetic algorithms</topic><topic>Job shop scheduling</topic><topic>Manufacturing systems</topic><topic>Optimal scheduling</topic><topic>Processor scheduling</topic><topic>Production systems</topic><topic>scheduling</topic><topic>Space exploration</topic><topic>Transportation</topic><topic>transportation systems</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Morandin, O.</creatorcontrib><creatorcontrib>Kato, E. R. R.</creatorcontrib><creatorcontrib>Sanches, D. S.</creatorcontrib><creatorcontrib>Muniz, B. D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morandin, O.</au><au>Kato, E. R. R.</au><au>Sanches, D. S.</au><au>Muniz, B. D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling strategy by adaptive genetic algorithm for production reactive scheduling with simultaneous use of machines and AGVs</atitle><btitle>2009 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2009-10</date><risdate>2009</risdate><spage>704</spage><epage>709</epage><pages>704-709</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>9781424427932</isbn><isbn>1424427932</isbn><eisbn>9781424427949</eisbn><eisbn>1424427940</eisbn><abstract>The problem of production scheduling of manufacturing systems is characterized by the large number of possible solutions. Several researches have been using the Genetic Algorithms (GA) as a search method to solve this problem since these algorithms have the capacity of globally exploring the search space and find good solutions quickly. Since the performance of the GA is directly related to the choice of the parameters of genetic operators, and a bad choice can depreciate the performance, this paper proposes the use of Adaptive Genetic Algorithm to solve this kind of scheduling problem considering the machines and the Automated Guided Vehicles (AGVs). The aim of this paper is to get a good production reactive schedule in order to achieve a good makespan value in a low response obtaining time. The results of this paper were validated in large scenarios and compared with the results of two other approaches. These results are presented and discussed in this paper.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2009.5346695</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2009 IEEE International Conference on Systems, Man and Cybernetics, 2009, p.704-709
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_5346695
source IEEE Electronic Library (IEL) Conference Proceedings
subjects adaptive genetic algorithm
automated guided vehicle
Flexible manufacturing systems
Genetic algorithms
Job shop scheduling
Manufacturing systems
Optimal scheduling
Processor scheduling
Production systems
scheduling
Space exploration
Transportation
transportation systems
Vehicles
title Modeling strategy by adaptive genetic algorithm for production reactive scheduling with simultaneous use of machines and AGVs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A09%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20strategy%20by%20adaptive%20genetic%20algorithm%20for%20production%20reactive%20scheduling%20with%20simultaneous%20use%20of%20machines%20and%20AGVs&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Morandin,%20O.&rft.date=2009-10&rft.spage=704&rft.epage=709&rft.pages=704-709&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=9781424427932&rft.isbn_list=1424427932&rft_id=info:doi/10.1109/ICSMC.2009.5346695&rft_dat=%3Cieee_6IE%3E5346695%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424427949&rft.eisbn_list=1424427940&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5346695&rfr_iscdi=true