Online evolutionary context-aware classifier ensemble framework for object recognition

In this paper, we propose an online evolutionary context-aware classifier ensemble framework for object recognition systems which are adaptive to various environments. The starting point utilizes a context recognizer, a context knowledge base and a classifier ensemble generator to provide optimal so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhan Yu, Mi Young Nam, Rhee, P.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3433
container_issue
container_start_page 3428
container_title
container_volume
creator Zhan Yu
Mi Young Nam
Rhee, P.K.
description In this paper, we propose an online evolutionary context-aware classifier ensemble framework for object recognition systems which are adaptive to various environments. The starting point utilizes a context recognizer, a context knowledge base and a classifier ensemble generator to provide optimal solutions for classifier ensemble. Even though our framework is quite general and could be applied to various classification tasks, here we focus on the cases of face recognition. The proposed framework uses an unsupervised learning method to carry out context modeling tasks for various environments. The data for classifier ensemble are assigned to corresponding contexts based on supervised learning and an evolutionary algorithm processes all the information to generate context knowledge for online adaptation. Experimental comparisons with systems based on conventional face recognition algorithms upon four extended benchmark data sets, E-FERET, E-Yale, E-INHA, and our own database showed that the system based on our framework was able to operate in dynamic environments with stable performance which others could not achieve.
doi_str_mv 10.1109/ICSMC.2009.5346197
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5346197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5346197</ieee_id><sourcerecordid>5346197</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7e254f96191786a68c5fcdd0e7e4b15bd5c58dbfd4a8ed628854ac5508ccebc43</originalsourceid><addsrcrecordid>eNpVkMlOwzAURc1Qibb0B2DjH0ixHT8PSxQxVAJ1wSB2leM8I5c0Rk6g8PcU0Q2ru7jS0bmXkDPO5pwze7GoHu6ruWDMzqGUilt9QGZWGy6FlEJbaQ_JWIDWBVcAR_-6UhyTMWdKFFaIlxGZ7DDGMqUMOyGTvl8zJpjkZkyel10bO6T4mdqPIabO5W_qUzfg11C4rctIfev6PoaImWLX46ZukYbsNrhN-Y2GlGmq1-gHmtGn1y7-Uk7JKLi2x9k-p-Tp-uqxui3uljeL6vKuiFzDUGgUIIPdjePaKKeMh-CbhqFGWXOoG_Bgmjo00hlslDAGpPMAzHiPtZfllJz_cSMirt5z3Oz8V_u_yh-bu1r8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Online evolutionary context-aware classifier ensemble framework for object recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhan Yu ; Mi Young Nam ; Rhee, P.K.</creator><creatorcontrib>Zhan Yu ; Mi Young Nam ; Rhee, P.K.</creatorcontrib><description>In this paper, we propose an online evolutionary context-aware classifier ensemble framework for object recognition systems which are adaptive to various environments. The starting point utilizes a context recognizer, a context knowledge base and a classifier ensemble generator to provide optimal solutions for classifier ensemble. Even though our framework is quite general and could be applied to various classification tasks, here we focus on the cases of face recognition. The proposed framework uses an unsupervised learning method to carry out context modeling tasks for various environments. The data for classifier ensemble are assigned to corresponding contexts based on supervised learning and an evolutionary algorithm processes all the information to generate context knowledge for online adaptation. Experimental comparisons with systems based on conventional face recognition algorithms upon four extended benchmark data sets, E-FERET, E-Yale, E-INHA, and our own database showed that the system based on our framework was able to operate in dynamic environments with stable performance which others could not achieve.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 9781424427932</identifier><identifier>ISBN: 1424427932</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781424427949</identifier><identifier>EISBN: 1424427940</identifier><identifier>DOI: 10.1109/ICSMC.2009.5346197</identifier><identifier>LCCN: 2008906680</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive systems ; Chromium ; Context modeling ; Context-Aware ; Cybernetics ; Evolutionary computation ; evolutionary computing ; Face recognition ; Object recognition ; online classifier ensemble ; Supervised learning ; Unsupervised learning ; USA Councils</subject><ispartof>2009 IEEE International Conference on Systems, Man and Cybernetics, 2009, p.3428-3433</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5346197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5346197$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhan Yu</creatorcontrib><creatorcontrib>Mi Young Nam</creatorcontrib><creatorcontrib>Rhee, P.K.</creatorcontrib><title>Online evolutionary context-aware classifier ensemble framework for object recognition</title><title>2009 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>In this paper, we propose an online evolutionary context-aware classifier ensemble framework for object recognition systems which are adaptive to various environments. The starting point utilizes a context recognizer, a context knowledge base and a classifier ensemble generator to provide optimal solutions for classifier ensemble. Even though our framework is quite general and could be applied to various classification tasks, here we focus on the cases of face recognition. The proposed framework uses an unsupervised learning method to carry out context modeling tasks for various environments. The data for classifier ensemble are assigned to corresponding contexts based on supervised learning and an evolutionary algorithm processes all the information to generate context knowledge for online adaptation. Experimental comparisons with systems based on conventional face recognition algorithms upon four extended benchmark data sets, E-FERET, E-Yale, E-INHA, and our own database showed that the system based on our framework was able to operate in dynamic environments with stable performance which others could not achieve.</description><subject>Adaptive systems</subject><subject>Chromium</subject><subject>Context modeling</subject><subject>Context-Aware</subject><subject>Cybernetics</subject><subject>Evolutionary computation</subject><subject>evolutionary computing</subject><subject>Face recognition</subject><subject>Object recognition</subject><subject>online classifier ensemble</subject><subject>Supervised learning</subject><subject>Unsupervised learning</subject><subject>USA Councils</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>9781424427932</isbn><isbn>1424427932</isbn><isbn>9781424427949</isbn><isbn>1424427940</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMlOwzAURc1Qibb0B2DjH0ixHT8PSxQxVAJ1wSB2leM8I5c0Rk6g8PcU0Q2ru7jS0bmXkDPO5pwze7GoHu6ruWDMzqGUilt9QGZWGy6FlEJbaQ_JWIDWBVcAR_-6UhyTMWdKFFaIlxGZ7DDGMqUMOyGTvl8zJpjkZkyel10bO6T4mdqPIabO5W_qUzfg11C4rctIfev6PoaImWLX46ZukYbsNrhN-Y2GlGmq1-gHmtGn1y7-Uk7JKLi2x9k-p-Tp-uqxui3uljeL6vKuiFzDUGgUIIPdjePaKKeMh-CbhqFGWXOoG_Bgmjo00hlslDAGpPMAzHiPtZfllJz_cSMirt5z3Oz8V_u_yh-bu1r8</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Zhan Yu</creator><creator>Mi Young Nam</creator><creator>Rhee, P.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200910</creationdate><title>Online evolutionary context-aware classifier ensemble framework for object recognition</title><author>Zhan Yu ; Mi Young Nam ; Rhee, P.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7e254f96191786a68c5fcdd0e7e4b15bd5c58dbfd4a8ed628854ac5508ccebc43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive systems</topic><topic>Chromium</topic><topic>Context modeling</topic><topic>Context-Aware</topic><topic>Cybernetics</topic><topic>Evolutionary computation</topic><topic>evolutionary computing</topic><topic>Face recognition</topic><topic>Object recognition</topic><topic>online classifier ensemble</topic><topic>Supervised learning</topic><topic>Unsupervised learning</topic><topic>USA Councils</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhan Yu</creatorcontrib><creatorcontrib>Mi Young Nam</creatorcontrib><creatorcontrib>Rhee, P.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhan Yu</au><au>Mi Young Nam</au><au>Rhee, P.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Online evolutionary context-aware classifier ensemble framework for object recognition</atitle><btitle>2009 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2009-10</date><risdate>2009</risdate><spage>3428</spage><epage>3433</epage><pages>3428-3433</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>9781424427932</isbn><isbn>1424427932</isbn><eisbn>9781424427949</eisbn><eisbn>1424427940</eisbn><abstract>In this paper, we propose an online evolutionary context-aware classifier ensemble framework for object recognition systems which are adaptive to various environments. The starting point utilizes a context recognizer, a context knowledge base and a classifier ensemble generator to provide optimal solutions for classifier ensemble. Even though our framework is quite general and could be applied to various classification tasks, here we focus on the cases of face recognition. The proposed framework uses an unsupervised learning method to carry out context modeling tasks for various environments. The data for classifier ensemble are assigned to corresponding contexts based on supervised learning and an evolutionary algorithm processes all the information to generate context knowledge for online adaptation. Experimental comparisons with systems based on conventional face recognition algorithms upon four extended benchmark data sets, E-FERET, E-Yale, E-INHA, and our own database showed that the system based on our framework was able to operate in dynamic environments with stable performance which others could not achieve.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2009.5346197</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2009 IEEE International Conference on Systems, Man and Cybernetics, 2009, p.3428-3433
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_5346197
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive systems
Chromium
Context modeling
Context-Aware
Cybernetics
Evolutionary computation
evolutionary computing
Face recognition
Object recognition
online classifier ensemble
Supervised learning
Unsupervised learning
USA Councils
title Online evolutionary context-aware classifier ensemble framework for object recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Online%20evolutionary%20context-aware%20classifier%20ensemble%20framework%20for%20object%20recognition&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Zhan%20Yu&rft.date=2009-10&rft.spage=3428&rft.epage=3433&rft.pages=3428-3433&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=9781424427932&rft.isbn_list=1424427932&rft_id=info:doi/10.1109/ICSMC.2009.5346197&rft_dat=%3Cieee_6IE%3E5346197%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424427949&rft.eisbn_list=1424427940&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5346197&rfr_iscdi=true