Online evolutionary context-aware classifier ensemble framework for object recognition
In this paper, we propose an online evolutionary context-aware classifier ensemble framework for object recognition systems which are adaptive to various environments. The starting point utilizes a context recognizer, a context knowledge base and a classifier ensemble generator to provide optimal so...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3433 |
---|---|
container_issue | |
container_start_page | 3428 |
container_title | |
container_volume | |
creator | Zhan Yu Mi Young Nam Rhee, P.K. |
description | In this paper, we propose an online evolutionary context-aware classifier ensemble framework for object recognition systems which are adaptive to various environments. The starting point utilizes a context recognizer, a context knowledge base and a classifier ensemble generator to provide optimal solutions for classifier ensemble. Even though our framework is quite general and could be applied to various classification tasks, here we focus on the cases of face recognition. The proposed framework uses an unsupervised learning method to carry out context modeling tasks for various environments. The data for classifier ensemble are assigned to corresponding contexts based on supervised learning and an evolutionary algorithm processes all the information to generate context knowledge for online adaptation. Experimental comparisons with systems based on conventional face recognition algorithms upon four extended benchmark data sets, E-FERET, E-Yale, E-INHA, and our own database showed that the system based on our framework was able to operate in dynamic environments with stable performance which others could not achieve. |
doi_str_mv | 10.1109/ICSMC.2009.5346197 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5346197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5346197</ieee_id><sourcerecordid>5346197</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7e254f96191786a68c5fcdd0e7e4b15bd5c58dbfd4a8ed628854ac5508ccebc43</originalsourceid><addsrcrecordid>eNpVkMlOwzAURc1Qibb0B2DjH0ixHT8PSxQxVAJ1wSB2leM8I5c0Rk6g8PcU0Q2ru7jS0bmXkDPO5pwze7GoHu6ruWDMzqGUilt9QGZWGy6FlEJbaQ_JWIDWBVcAR_-6UhyTMWdKFFaIlxGZ7DDGMqUMOyGTvl8zJpjkZkyel10bO6T4mdqPIabO5W_qUzfg11C4rctIfev6PoaImWLX46ZukYbsNrhN-Y2GlGmq1-gHmtGn1y7-Uk7JKLi2x9k-p-Tp-uqxui3uljeL6vKuiFzDUGgUIIPdjePaKKeMh-CbhqFGWXOoG_Bgmjo00hlslDAGpPMAzHiPtZfllJz_cSMirt5z3Oz8V_u_yh-bu1r8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Online evolutionary context-aware classifier ensemble framework for object recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhan Yu ; Mi Young Nam ; Rhee, P.K.</creator><creatorcontrib>Zhan Yu ; Mi Young Nam ; Rhee, P.K.</creatorcontrib><description>In this paper, we propose an online evolutionary context-aware classifier ensemble framework for object recognition systems which are adaptive to various environments. The starting point utilizes a context recognizer, a context knowledge base and a classifier ensemble generator to provide optimal solutions for classifier ensemble. Even though our framework is quite general and could be applied to various classification tasks, here we focus on the cases of face recognition. The proposed framework uses an unsupervised learning method to carry out context modeling tasks for various environments. The data for classifier ensemble are assigned to corresponding contexts based on supervised learning and an evolutionary algorithm processes all the information to generate context knowledge for online adaptation. Experimental comparisons with systems based on conventional face recognition algorithms upon four extended benchmark data sets, E-FERET, E-Yale, E-INHA, and our own database showed that the system based on our framework was able to operate in dynamic environments with stable performance which others could not achieve.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 9781424427932</identifier><identifier>ISBN: 1424427932</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781424427949</identifier><identifier>EISBN: 1424427940</identifier><identifier>DOI: 10.1109/ICSMC.2009.5346197</identifier><identifier>LCCN: 2008906680</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive systems ; Chromium ; Context modeling ; Context-Aware ; Cybernetics ; Evolutionary computation ; evolutionary computing ; Face recognition ; Object recognition ; online classifier ensemble ; Supervised learning ; Unsupervised learning ; USA Councils</subject><ispartof>2009 IEEE International Conference on Systems, Man and Cybernetics, 2009, p.3428-3433</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5346197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5346197$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhan Yu</creatorcontrib><creatorcontrib>Mi Young Nam</creatorcontrib><creatorcontrib>Rhee, P.K.</creatorcontrib><title>Online evolutionary context-aware classifier ensemble framework for object recognition</title><title>2009 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>In this paper, we propose an online evolutionary context-aware classifier ensemble framework for object recognition systems which are adaptive to various environments. The starting point utilizes a context recognizer, a context knowledge base and a classifier ensemble generator to provide optimal solutions for classifier ensemble. Even though our framework is quite general and could be applied to various classification tasks, here we focus on the cases of face recognition. The proposed framework uses an unsupervised learning method to carry out context modeling tasks for various environments. The data for classifier ensemble are assigned to corresponding contexts based on supervised learning and an evolutionary algorithm processes all the information to generate context knowledge for online adaptation. Experimental comparisons with systems based on conventional face recognition algorithms upon four extended benchmark data sets, E-FERET, E-Yale, E-INHA, and our own database showed that the system based on our framework was able to operate in dynamic environments with stable performance which others could not achieve.</description><subject>Adaptive systems</subject><subject>Chromium</subject><subject>Context modeling</subject><subject>Context-Aware</subject><subject>Cybernetics</subject><subject>Evolutionary computation</subject><subject>evolutionary computing</subject><subject>Face recognition</subject><subject>Object recognition</subject><subject>online classifier ensemble</subject><subject>Supervised learning</subject><subject>Unsupervised learning</subject><subject>USA Councils</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>9781424427932</isbn><isbn>1424427932</isbn><isbn>9781424427949</isbn><isbn>1424427940</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMlOwzAURc1Qibb0B2DjH0ixHT8PSxQxVAJ1wSB2leM8I5c0Rk6g8PcU0Q2ru7jS0bmXkDPO5pwze7GoHu6ruWDMzqGUilt9QGZWGy6FlEJbaQ_JWIDWBVcAR_-6UhyTMWdKFFaIlxGZ7DDGMqUMOyGTvl8zJpjkZkyel10bO6T4mdqPIabO5W_qUzfg11C4rctIfev6PoaImWLX46ZukYbsNrhN-Y2GlGmq1-gHmtGn1y7-Uk7JKLi2x9k-p-Tp-uqxui3uljeL6vKuiFzDUGgUIIPdjePaKKeMh-CbhqFGWXOoG_Bgmjo00hlslDAGpPMAzHiPtZfllJz_cSMirt5z3Oz8V_u_yh-bu1r8</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Zhan Yu</creator><creator>Mi Young Nam</creator><creator>Rhee, P.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200910</creationdate><title>Online evolutionary context-aware classifier ensemble framework for object recognition</title><author>Zhan Yu ; Mi Young Nam ; Rhee, P.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7e254f96191786a68c5fcdd0e7e4b15bd5c58dbfd4a8ed628854ac5508ccebc43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive systems</topic><topic>Chromium</topic><topic>Context modeling</topic><topic>Context-Aware</topic><topic>Cybernetics</topic><topic>Evolutionary computation</topic><topic>evolutionary computing</topic><topic>Face recognition</topic><topic>Object recognition</topic><topic>online classifier ensemble</topic><topic>Supervised learning</topic><topic>Unsupervised learning</topic><topic>USA Councils</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhan Yu</creatorcontrib><creatorcontrib>Mi Young Nam</creatorcontrib><creatorcontrib>Rhee, P.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhan Yu</au><au>Mi Young Nam</au><au>Rhee, P.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Online evolutionary context-aware classifier ensemble framework for object recognition</atitle><btitle>2009 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2009-10</date><risdate>2009</risdate><spage>3428</spage><epage>3433</epage><pages>3428-3433</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>9781424427932</isbn><isbn>1424427932</isbn><eisbn>9781424427949</eisbn><eisbn>1424427940</eisbn><abstract>In this paper, we propose an online evolutionary context-aware classifier ensemble framework for object recognition systems which are adaptive to various environments. The starting point utilizes a context recognizer, a context knowledge base and a classifier ensemble generator to provide optimal solutions for classifier ensemble. Even though our framework is quite general and could be applied to various classification tasks, here we focus on the cases of face recognition. The proposed framework uses an unsupervised learning method to carry out context modeling tasks for various environments. The data for classifier ensemble are assigned to corresponding contexts based on supervised learning and an evolutionary algorithm processes all the information to generate context knowledge for online adaptation. Experimental comparisons with systems based on conventional face recognition algorithms upon four extended benchmark data sets, E-FERET, E-Yale, E-INHA, and our own database showed that the system based on our framework was able to operate in dynamic environments with stable performance which others could not achieve.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2009.5346197</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1062-922X |
ispartof | 2009 IEEE International Conference on Systems, Man and Cybernetics, 2009, p.3428-3433 |
issn | 1062-922X 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_5346197 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive systems Chromium Context modeling Context-Aware Cybernetics Evolutionary computation evolutionary computing Face recognition Object recognition online classifier ensemble Supervised learning Unsupervised learning USA Councils |
title | Online evolutionary context-aware classifier ensemble framework for object recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Online%20evolutionary%20context-aware%20classifier%20ensemble%20framework%20for%20object%20recognition&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Zhan%20Yu&rft.date=2009-10&rft.spage=3428&rft.epage=3433&rft.pages=3428-3433&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=9781424427932&rft.isbn_list=1424427932&rft_id=info:doi/10.1109/ICSMC.2009.5346197&rft_dat=%3Cieee_6IE%3E5346197%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424427949&rft.eisbn_list=1424427940&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5346197&rfr_iscdi=true |