Impact of Low-Energy Proton Induced Upsets on Test Methods and Rate Predictions

Direct ionization from low energy protons is shown to cause upsets in a 65-nm bulk CMOS SRAM, consistent with results reported for other deep submicron technologies. The experimental data are used to calibrate a Monte Carlo rate prediction model, which is used to evaluate the importance of this upse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2009-12, Vol.56 (6), p.3085-3092
Hauptverfasser: Sierawski, B.D., Pellish, J.A., Reed, R.A., Schrimpf, R.D., Warren, K.M., Weller, R.A., Mendenhall, M.H., Black, J.D., Tipton, A.D., Xapsos, M.A., Baumann, R.C., Xiaowei Deng, Campola, M.J., Friendlich, M.R., Kim, H.S., Phan, A.M., Seidleck, C.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Direct ionization from low energy protons is shown to cause upsets in a 65-nm bulk CMOS SRAM, consistent with results reported for other deep submicron technologies. The experimental data are used to calibrate a Monte Carlo rate prediction model, which is used to evaluate the importance of this upset mechanism in typical space environments. For the ISS orbit and a geosynchronous (worst day) orbit, direct ionization from protons is a major contributor to the total error rate, but for a geosynchronous (solar min) orbit, the proton flux is too low to cause a significant number of events. The implications of these results for hardness assurance are discussed.
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2009.2032545