Vision-based obstacle detection and avoidance for the CWRU cutter Autonomous Lawnmower
This paper describes the vision-based obstacle detection system of the CWRU Cutter, an Autonomous Lawnmower developed for the annual ¿Institute of Navigation (ION) Autonomous Lawnmower Competition.¿ Unlike LIDAR sensors commonly found on autonomous vehicles, computer vision systems can provide simil...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 223 |
---|---|
container_issue | |
container_start_page | 218 |
container_title | |
container_volume | |
creator | Schepelmann, A. Snow, H.H. Hughes, B.E. Merat, F.L. Quinn, R.D. Green, J.M. |
description | This paper describes the vision-based obstacle detection system of the CWRU Cutter, an Autonomous Lawnmower developed for the annual ¿Institute of Navigation (ION) Autonomous Lawnmower Competition.¿ Unlike LIDAR sensors commonly found on autonomous vehicles, computer vision systems can provide similar information at drastically reduced prices. Though significantly more cost-effective than LIDAR, these systems have inherent problems due to changing lighting conditions and shadows. This paper investigates the use of image hue and intensity to create a robust, real-time vision-based obstacle detection system for use during the ION competition. Data abstraction methods used to process incoming images for easy combination of information from multiple sensors are also discussed. Using this system, CWRU Cutter correctly identified obstacles in 89% of frames containing fence, 78% of frames containing flowerbeds, and 84% of frames containing boundary lines. |
doi_str_mv | 10.1109/TEPRA.2009.5339619 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5339619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5339619</ieee_id><sourcerecordid>5339619</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3768a9ab6f8ac047e4a81c005d823fccca6623fd3f2360c2f7af2440a2c4bcaf3</originalsourceid><addsrcrecordid>eNo1UNtKAzEUjGjBtu4P6Et-YNeTy2aTx1LqBQpKaetjOZtNcKXdyCZr8e-tWJ9mhmEGZgi5ZVAwBuZ-vXhdzQoOYIpSCKOYuSATJrmU0hiuL0lmKv2vGVyRMRe8zKHkakQmvzkDSlXymmQxfgCAYNoAM2Oy3baxDV1eY3QNDXVMaPeONi45m04Gxa6h-BXaBjvrqA89Te-Ozt9WG2qHlFxPZ0MKXTiEIdIlHrtDOLr-how87qPLzjglm4fFev6UL18en-ezZd6yqky5qJRGg7XyGi3IyknUzAKUjebCW2tRqRNphOdCgeW-Qn8aCcitrC16MSV3f72tc2732bcH7L9354_EDw8UV4I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Vision-based obstacle detection and avoidance for the CWRU cutter Autonomous Lawnmower</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schepelmann, A. ; Snow, H.H. ; Hughes, B.E. ; Merat, F.L. ; Quinn, R.D. ; Green, J.M.</creator><creatorcontrib>Schepelmann, A. ; Snow, H.H. ; Hughes, B.E. ; Merat, F.L. ; Quinn, R.D. ; Green, J.M.</creatorcontrib><description>This paper describes the vision-based obstacle detection system of the CWRU Cutter, an Autonomous Lawnmower developed for the annual ¿Institute of Navigation (ION) Autonomous Lawnmower Competition.¿ Unlike LIDAR sensors commonly found on autonomous vehicles, computer vision systems can provide similar information at drastically reduced prices. Though significantly more cost-effective than LIDAR, these systems have inherent problems due to changing lighting conditions and shadows. This paper investigates the use of image hue and intensity to create a robust, real-time vision-based obstacle detection system for use during the ION competition. Data abstraction methods used to process incoming images for easy combination of information from multiple sensors are also discussed. Using this system, CWRU Cutter correctly identified obstacles in 89% of frames containing fence, 78% of frames containing flowerbeds, and 84% of frames containing boundary lines.</description><identifier>ISSN: 2325-0526</identifier><identifier>ISBN: 9781424449910</identifier><identifier>ISBN: 142444991X</identifier><identifier>EISBN: 1424449928</identifier><identifier>EISBN: 9781424449927</identifier><identifier>DOI: 10.1109/TEPRA.2009.5339619</identifier><identifier>LCCN: 2009906674</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Laser radar ; Mobile robots ; Navigation ; Real time systems ; Remotely operated vehicles ; Robustness ; Sensor phenomena and characterization ; Sensor systems ; Vehicle detection</subject><ispartof>2009 IEEE International Conference on Technologies for Practical Robot Applications, 2009, p.218-223</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5339619$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5339619$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schepelmann, A.</creatorcontrib><creatorcontrib>Snow, H.H.</creatorcontrib><creatorcontrib>Hughes, B.E.</creatorcontrib><creatorcontrib>Merat, F.L.</creatorcontrib><creatorcontrib>Quinn, R.D.</creatorcontrib><creatorcontrib>Green, J.M.</creatorcontrib><title>Vision-based obstacle detection and avoidance for the CWRU cutter Autonomous Lawnmower</title><title>2009 IEEE International Conference on Technologies for Practical Robot Applications</title><addtitle>TEPRA</addtitle><description>This paper describes the vision-based obstacle detection system of the CWRU Cutter, an Autonomous Lawnmower developed for the annual ¿Institute of Navigation (ION) Autonomous Lawnmower Competition.¿ Unlike LIDAR sensors commonly found on autonomous vehicles, computer vision systems can provide similar information at drastically reduced prices. Though significantly more cost-effective than LIDAR, these systems have inherent problems due to changing lighting conditions and shadows. This paper investigates the use of image hue and intensity to create a robust, real-time vision-based obstacle detection system for use during the ION competition. Data abstraction methods used to process incoming images for easy combination of information from multiple sensors are also discussed. Using this system, CWRU Cutter correctly identified obstacles in 89% of frames containing fence, 78% of frames containing flowerbeds, and 84% of frames containing boundary lines.</description><subject>Computer vision</subject><subject>Laser radar</subject><subject>Mobile robots</subject><subject>Navigation</subject><subject>Real time systems</subject><subject>Remotely operated vehicles</subject><subject>Robustness</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><subject>Vehicle detection</subject><issn>2325-0526</issn><isbn>9781424449910</isbn><isbn>142444991X</isbn><isbn>1424449928</isbn><isbn>9781424449927</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtKAzEUjGjBtu4P6Et-YNeTy2aTx1LqBQpKaetjOZtNcKXdyCZr8e-tWJ9mhmEGZgi5ZVAwBuZ-vXhdzQoOYIpSCKOYuSATJrmU0hiuL0lmKv2vGVyRMRe8zKHkakQmvzkDSlXymmQxfgCAYNoAM2Oy3baxDV1eY3QNDXVMaPeONi45m04Gxa6h-BXaBjvrqA89Te-Ozt9WG2qHlFxPZ0MKXTiEIdIlHrtDOLr-how87qPLzjglm4fFev6UL18en-ezZd6yqky5qJRGg7XyGi3IyknUzAKUjebCW2tRqRNphOdCgeW-Qn8aCcitrC16MSV3f72tc2732bcH7L9354_EDw8UV4I</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Schepelmann, A.</creator><creator>Snow, H.H.</creator><creator>Hughes, B.E.</creator><creator>Merat, F.L.</creator><creator>Quinn, R.D.</creator><creator>Green, J.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200911</creationdate><title>Vision-based obstacle detection and avoidance for the CWRU cutter Autonomous Lawnmower</title><author>Schepelmann, A. ; Snow, H.H. ; Hughes, B.E. ; Merat, F.L. ; Quinn, R.D. ; Green, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3768a9ab6f8ac047e4a81c005d823fccca6623fd3f2360c2f7af2440a2c4bcaf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer vision</topic><topic>Laser radar</topic><topic>Mobile robots</topic><topic>Navigation</topic><topic>Real time systems</topic><topic>Remotely operated vehicles</topic><topic>Robustness</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><topic>Vehicle detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Schepelmann, A.</creatorcontrib><creatorcontrib>Snow, H.H.</creatorcontrib><creatorcontrib>Hughes, B.E.</creatorcontrib><creatorcontrib>Merat, F.L.</creatorcontrib><creatorcontrib>Quinn, R.D.</creatorcontrib><creatorcontrib>Green, J.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schepelmann, A.</au><au>Snow, H.H.</au><au>Hughes, B.E.</au><au>Merat, F.L.</au><au>Quinn, R.D.</au><au>Green, J.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Vision-based obstacle detection and avoidance for the CWRU cutter Autonomous Lawnmower</atitle><btitle>2009 IEEE International Conference on Technologies for Practical Robot Applications</btitle><stitle>TEPRA</stitle><date>2009-11</date><risdate>2009</risdate><spage>218</spage><epage>223</epage><pages>218-223</pages><issn>2325-0526</issn><isbn>9781424449910</isbn><isbn>142444991X</isbn><eisbn>1424449928</eisbn><eisbn>9781424449927</eisbn><abstract>This paper describes the vision-based obstacle detection system of the CWRU Cutter, an Autonomous Lawnmower developed for the annual ¿Institute of Navigation (ION) Autonomous Lawnmower Competition.¿ Unlike LIDAR sensors commonly found on autonomous vehicles, computer vision systems can provide similar information at drastically reduced prices. Though significantly more cost-effective than LIDAR, these systems have inherent problems due to changing lighting conditions and shadows. This paper investigates the use of image hue and intensity to create a robust, real-time vision-based obstacle detection system for use during the ION competition. Data abstraction methods used to process incoming images for easy combination of information from multiple sensors are also discussed. Using this system, CWRU Cutter correctly identified obstacles in 89% of frames containing fence, 78% of frames containing flowerbeds, and 84% of frames containing boundary lines.</abstract><pub>IEEE</pub><doi>10.1109/TEPRA.2009.5339619</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2325-0526 |
ispartof | 2009 IEEE International Conference on Technologies for Practical Robot Applications, 2009, p.218-223 |
issn | 2325-0526 |
language | eng |
recordid | cdi_ieee_primary_5339619 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer vision Laser radar Mobile robots Navigation Real time systems Remotely operated vehicles Robustness Sensor phenomena and characterization Sensor systems Vehicle detection |
title | Vision-based obstacle detection and avoidance for the CWRU cutter Autonomous Lawnmower |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Vision-based%20obstacle%20detection%20and%20avoidance%20for%20the%20CWRU%20cutter%20Autonomous%20Lawnmower&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Technologies%20for%20Practical%20Robot%20Applications&rft.au=Schepelmann,%20A.&rft.date=2009-11&rft.spage=218&rft.epage=223&rft.pages=218-223&rft.issn=2325-0526&rft.isbn=9781424449910&rft.isbn_list=142444991X&rft_id=info:doi/10.1109/TEPRA.2009.5339619&rft_dat=%3Cieee_6IE%3E5339619%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424449928&rft.eisbn_list=9781424449927&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5339619&rfr_iscdi=true |