Vision-based obstacle detection and avoidance for the CWRU cutter Autonomous Lawnmower

This paper describes the vision-based obstacle detection system of the CWRU Cutter, an Autonomous Lawnmower developed for the annual ¿Institute of Navigation (ION) Autonomous Lawnmower Competition.¿ Unlike LIDAR sensors commonly found on autonomous vehicles, computer vision systems can provide simil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schepelmann, A., Snow, H.H., Hughes, B.E., Merat, F.L., Quinn, R.D., Green, J.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue
container_start_page 218
container_title
container_volume
creator Schepelmann, A.
Snow, H.H.
Hughes, B.E.
Merat, F.L.
Quinn, R.D.
Green, J.M.
description This paper describes the vision-based obstacle detection system of the CWRU Cutter, an Autonomous Lawnmower developed for the annual ¿Institute of Navigation (ION) Autonomous Lawnmower Competition.¿ Unlike LIDAR sensors commonly found on autonomous vehicles, computer vision systems can provide similar information at drastically reduced prices. Though significantly more cost-effective than LIDAR, these systems have inherent problems due to changing lighting conditions and shadows. This paper investigates the use of image hue and intensity to create a robust, real-time vision-based obstacle detection system for use during the ION competition. Data abstraction methods used to process incoming images for easy combination of information from multiple sensors are also discussed. Using this system, CWRU Cutter correctly identified obstacles in 89% of frames containing fence, 78% of frames containing flowerbeds, and 84% of frames containing boundary lines.
doi_str_mv 10.1109/TEPRA.2009.5339619
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5339619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5339619</ieee_id><sourcerecordid>5339619</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3768a9ab6f8ac047e4a81c005d823fccca6623fd3f2360c2f7af2440a2c4bcaf3</originalsourceid><addsrcrecordid>eNo1UNtKAzEUjGjBtu4P6Et-YNeTy2aTx1LqBQpKaetjOZtNcKXdyCZr8e-tWJ9mhmEGZgi5ZVAwBuZ-vXhdzQoOYIpSCKOYuSATJrmU0hiuL0lmKv2vGVyRMRe8zKHkakQmvzkDSlXymmQxfgCAYNoAM2Oy3baxDV1eY3QNDXVMaPeONi45m04Gxa6h-BXaBjvrqA89Te-Ozt9WG2qHlFxPZ0MKXTiEIdIlHrtDOLr-how87qPLzjglm4fFev6UL18en-ezZd6yqky5qJRGg7XyGi3IyknUzAKUjebCW2tRqRNphOdCgeW-Qn8aCcitrC16MSV3f72tc2732bcH7L9354_EDw8UV4I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Vision-based obstacle detection and avoidance for the CWRU cutter Autonomous Lawnmower</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schepelmann, A. ; Snow, H.H. ; Hughes, B.E. ; Merat, F.L. ; Quinn, R.D. ; Green, J.M.</creator><creatorcontrib>Schepelmann, A. ; Snow, H.H. ; Hughes, B.E. ; Merat, F.L. ; Quinn, R.D. ; Green, J.M.</creatorcontrib><description>This paper describes the vision-based obstacle detection system of the CWRU Cutter, an Autonomous Lawnmower developed for the annual ¿Institute of Navigation (ION) Autonomous Lawnmower Competition.¿ Unlike LIDAR sensors commonly found on autonomous vehicles, computer vision systems can provide similar information at drastically reduced prices. Though significantly more cost-effective than LIDAR, these systems have inherent problems due to changing lighting conditions and shadows. This paper investigates the use of image hue and intensity to create a robust, real-time vision-based obstacle detection system for use during the ION competition. Data abstraction methods used to process incoming images for easy combination of information from multiple sensors are also discussed. Using this system, CWRU Cutter correctly identified obstacles in 89% of frames containing fence, 78% of frames containing flowerbeds, and 84% of frames containing boundary lines.</description><identifier>ISSN: 2325-0526</identifier><identifier>ISBN: 9781424449910</identifier><identifier>ISBN: 142444991X</identifier><identifier>EISBN: 1424449928</identifier><identifier>EISBN: 9781424449927</identifier><identifier>DOI: 10.1109/TEPRA.2009.5339619</identifier><identifier>LCCN: 2009906674</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Laser radar ; Mobile robots ; Navigation ; Real time systems ; Remotely operated vehicles ; Robustness ; Sensor phenomena and characterization ; Sensor systems ; Vehicle detection</subject><ispartof>2009 IEEE International Conference on Technologies for Practical Robot Applications, 2009, p.218-223</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5339619$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5339619$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schepelmann, A.</creatorcontrib><creatorcontrib>Snow, H.H.</creatorcontrib><creatorcontrib>Hughes, B.E.</creatorcontrib><creatorcontrib>Merat, F.L.</creatorcontrib><creatorcontrib>Quinn, R.D.</creatorcontrib><creatorcontrib>Green, J.M.</creatorcontrib><title>Vision-based obstacle detection and avoidance for the CWRU cutter Autonomous Lawnmower</title><title>2009 IEEE International Conference on Technologies for Practical Robot Applications</title><addtitle>TEPRA</addtitle><description>This paper describes the vision-based obstacle detection system of the CWRU Cutter, an Autonomous Lawnmower developed for the annual ¿Institute of Navigation (ION) Autonomous Lawnmower Competition.¿ Unlike LIDAR sensors commonly found on autonomous vehicles, computer vision systems can provide similar information at drastically reduced prices. Though significantly more cost-effective than LIDAR, these systems have inherent problems due to changing lighting conditions and shadows. This paper investigates the use of image hue and intensity to create a robust, real-time vision-based obstacle detection system for use during the ION competition. Data abstraction methods used to process incoming images for easy combination of information from multiple sensors are also discussed. Using this system, CWRU Cutter correctly identified obstacles in 89% of frames containing fence, 78% of frames containing flowerbeds, and 84% of frames containing boundary lines.</description><subject>Computer vision</subject><subject>Laser radar</subject><subject>Mobile robots</subject><subject>Navigation</subject><subject>Real time systems</subject><subject>Remotely operated vehicles</subject><subject>Robustness</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><subject>Vehicle detection</subject><issn>2325-0526</issn><isbn>9781424449910</isbn><isbn>142444991X</isbn><isbn>1424449928</isbn><isbn>9781424449927</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtKAzEUjGjBtu4P6Et-YNeTy2aTx1LqBQpKaetjOZtNcKXdyCZr8e-tWJ9mhmEGZgi5ZVAwBuZ-vXhdzQoOYIpSCKOYuSATJrmU0hiuL0lmKv2vGVyRMRe8zKHkakQmvzkDSlXymmQxfgCAYNoAM2Oy3baxDV1eY3QNDXVMaPeONi45m04Gxa6h-BXaBjvrqA89Te-Ozt9WG2qHlFxPZ0MKXTiEIdIlHrtDOLr-how87qPLzjglm4fFev6UL18en-ezZd6yqky5qJRGg7XyGi3IyknUzAKUjebCW2tRqRNphOdCgeW-Qn8aCcitrC16MSV3f72tc2732bcH7L9354_EDw8UV4I</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Schepelmann, A.</creator><creator>Snow, H.H.</creator><creator>Hughes, B.E.</creator><creator>Merat, F.L.</creator><creator>Quinn, R.D.</creator><creator>Green, J.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200911</creationdate><title>Vision-based obstacle detection and avoidance for the CWRU cutter Autonomous Lawnmower</title><author>Schepelmann, A. ; Snow, H.H. ; Hughes, B.E. ; Merat, F.L. ; Quinn, R.D. ; Green, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3768a9ab6f8ac047e4a81c005d823fccca6623fd3f2360c2f7af2440a2c4bcaf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer vision</topic><topic>Laser radar</topic><topic>Mobile robots</topic><topic>Navigation</topic><topic>Real time systems</topic><topic>Remotely operated vehicles</topic><topic>Robustness</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><topic>Vehicle detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Schepelmann, A.</creatorcontrib><creatorcontrib>Snow, H.H.</creatorcontrib><creatorcontrib>Hughes, B.E.</creatorcontrib><creatorcontrib>Merat, F.L.</creatorcontrib><creatorcontrib>Quinn, R.D.</creatorcontrib><creatorcontrib>Green, J.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schepelmann, A.</au><au>Snow, H.H.</au><au>Hughes, B.E.</au><au>Merat, F.L.</au><au>Quinn, R.D.</au><au>Green, J.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Vision-based obstacle detection and avoidance for the CWRU cutter Autonomous Lawnmower</atitle><btitle>2009 IEEE International Conference on Technologies for Practical Robot Applications</btitle><stitle>TEPRA</stitle><date>2009-11</date><risdate>2009</risdate><spage>218</spage><epage>223</epage><pages>218-223</pages><issn>2325-0526</issn><isbn>9781424449910</isbn><isbn>142444991X</isbn><eisbn>1424449928</eisbn><eisbn>9781424449927</eisbn><abstract>This paper describes the vision-based obstacle detection system of the CWRU Cutter, an Autonomous Lawnmower developed for the annual ¿Institute of Navigation (ION) Autonomous Lawnmower Competition.¿ Unlike LIDAR sensors commonly found on autonomous vehicles, computer vision systems can provide similar information at drastically reduced prices. Though significantly more cost-effective than LIDAR, these systems have inherent problems due to changing lighting conditions and shadows. This paper investigates the use of image hue and intensity to create a robust, real-time vision-based obstacle detection system for use during the ION competition. Data abstraction methods used to process incoming images for easy combination of information from multiple sensors are also discussed. Using this system, CWRU Cutter correctly identified obstacles in 89% of frames containing fence, 78% of frames containing flowerbeds, and 84% of frames containing boundary lines.</abstract><pub>IEEE</pub><doi>10.1109/TEPRA.2009.5339619</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2325-0526
ispartof 2009 IEEE International Conference on Technologies for Practical Robot Applications, 2009, p.218-223
issn 2325-0526
language eng
recordid cdi_ieee_primary_5339619
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer vision
Laser radar
Mobile robots
Navigation
Real time systems
Remotely operated vehicles
Robustness
Sensor phenomena and characterization
Sensor systems
Vehicle detection
title Vision-based obstacle detection and avoidance for the CWRU cutter Autonomous Lawnmower
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Vision-based%20obstacle%20detection%20and%20avoidance%20for%20the%20CWRU%20cutter%20Autonomous%20Lawnmower&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Technologies%20for%20Practical%20Robot%20Applications&rft.au=Schepelmann,%20A.&rft.date=2009-11&rft.spage=218&rft.epage=223&rft.pages=218-223&rft.issn=2325-0526&rft.isbn=9781424449910&rft.isbn_list=142444991X&rft_id=info:doi/10.1109/TEPRA.2009.5339619&rft_dat=%3Cieee_6IE%3E5339619%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424449928&rft.eisbn_list=9781424449927&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5339619&rfr_iscdi=true