Advanced Biometric Identification on Face, Gender and Age Recognition

The face recognition system attains good accuracy in personal identification when they are provided with a large set of training sets. In this paper, we proposed Advanced Biometric Identification on Face, Gender and Age Recognition (ABIFGAR)algorithm for face recognition that yields good results whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ramesha, K., Patnaik, L.M., Srikanth, N., Venugopal, K.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue
container_start_page 23
container_title
container_volume
creator Ramesha, K.
Patnaik, L.M.
Ramesha, K.
Srikanth, N.
Venugopal, K.R.
description The face recognition system attains good accuracy in personal identification when they are provided with a large set of training sets. In this paper, we proposed Advanced Biometric Identification on Face, Gender and Age Recognition (ABIFGAR)algorithm for face recognition that yields good results when only small training set is available and it works even with a raining set as small as one image per person. The process is divided into three phases: Pre-processing, Feature Extraction and Classification. The geometric features from a facial image are obtained based on the symmetry of human faces and the variation of gray levels, the positions of eyes, nose and mouth are located by applying the Canny edge operator. The gender and age are classified based on shape and texture information using Posteriori Class Probability and Artificial Neural Network respectively. It is observed that the face recognition is 100%, the gender and age classification is around 98% and 94% respectively.
doi_str_mv 10.1109/ARTCom.2009.21
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5328100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5328100</ieee_id><sourcerecordid>5328100</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9e366502ddbd0b1866828cf2fe31811998f325ee8aba2127fafd56c78cd432b73</originalsourceid><addsrcrecordid>eNotjE1LxDAURSMiqGO3btzkB9ial-8sa5kZBwaEYVwPafIyRGwrbRH891b0cuEs7uEScg-sAmDuqT4cm6GrOGOu4nBBbpnRTgkrFb8khTMWJJdSAZPimhTT9M6WLKNl-oas6_jl-4CRPuehw3nMge4i9nNOOfg5Dz1duvEBH-kW-4gj9X2k9RnpAcNw7vOvc0eukv-YsPjnirxt1sfmpdy_bndNvS8zGDWXDoXWivEY28hasFpbbkPiCQVYAOdsElwhWt96Dtwkn6LSwdgQpeCtESvy8PebEfH0OebOj98nJbgFxsQPmWVLCQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Advanced Biometric Identification on Face, Gender and Age Recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ramesha, K. ; Patnaik, L.M. ; Ramesha, K. ; Srikanth, N. ; Venugopal, K.R.</creator><creatorcontrib>Ramesha, K. ; Patnaik, L.M. ; Ramesha, K. ; Srikanth, N. ; Venugopal, K.R.</creatorcontrib><description>The face recognition system attains good accuracy in personal identification when they are provided with a large set of training sets. In this paper, we proposed Advanced Biometric Identification on Face, Gender and Age Recognition (ABIFGAR)algorithm for face recognition that yields good results when only small training set is available and it works even with a raining set as small as one image per person. The process is divided into three phases: Pre-processing, Feature Extraction and Classification. The geometric features from a facial image are obtained based on the symmetry of human faces and the variation of gray levels, the positions of eyes, nose and mouth are located by applying the Canny edge operator. The gender and age are classified based on shape and texture information using Posteriori Class Probability and Artificial Neural Network respectively. It is observed that the face recognition is 100%, the gender and age classification is around 98% and 94% respectively.</description><identifier>ISBN: 9781424451043</identifier><identifier>ISBN: 1424451043</identifier><identifier>EISBN: 0769538452</identifier><identifier>EISBN: 9780769538457</identifier><identifier>DOI: 10.1109/ARTCom.2009.21</identifier><language>eng</language><publisher>IEEE</publisher><subject>Age Classification ; Artificial neural networks ; Artificial NeuralNetworks ; Biometrics ; Eyes ; Face recognition ; Feature extraction ; Gender Classification ; Humans ; Image recognition ; Mouth ; Nose ; Shape ; Shape and Texture Transformation ; Wrinkle Texture</subject><ispartof>2009 International Conference on Advances in Recent Technologies in Communication and Computing, 2009, p.23-27</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5328100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5328100$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ramesha, K.</creatorcontrib><creatorcontrib>Patnaik, L.M.</creatorcontrib><creatorcontrib>Ramesha, K.</creatorcontrib><creatorcontrib>Srikanth, N.</creatorcontrib><creatorcontrib>Venugopal, K.R.</creatorcontrib><title>Advanced Biometric Identification on Face, Gender and Age Recognition</title><title>2009 International Conference on Advances in Recent Technologies in Communication and Computing</title><addtitle>ARTCOM</addtitle><description>The face recognition system attains good accuracy in personal identification when they are provided with a large set of training sets. In this paper, we proposed Advanced Biometric Identification on Face, Gender and Age Recognition (ABIFGAR)algorithm for face recognition that yields good results when only small training set is available and it works even with a raining set as small as one image per person. The process is divided into three phases: Pre-processing, Feature Extraction and Classification. The geometric features from a facial image are obtained based on the symmetry of human faces and the variation of gray levels, the positions of eyes, nose and mouth are located by applying the Canny edge operator. The gender and age are classified based on shape and texture information using Posteriori Class Probability and Artificial Neural Network respectively. It is observed that the face recognition is 100%, the gender and age classification is around 98% and 94% respectively.</description><subject>Age Classification</subject><subject>Artificial neural networks</subject><subject>Artificial NeuralNetworks</subject><subject>Biometrics</subject><subject>Eyes</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Gender Classification</subject><subject>Humans</subject><subject>Image recognition</subject><subject>Mouth</subject><subject>Nose</subject><subject>Shape</subject><subject>Shape and Texture Transformation</subject><subject>Wrinkle Texture</subject><isbn>9781424451043</isbn><isbn>1424451043</isbn><isbn>0769538452</isbn><isbn>9780769538457</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjE1LxDAURSMiqGO3btzkB9ial-8sa5kZBwaEYVwPafIyRGwrbRH891b0cuEs7uEScg-sAmDuqT4cm6GrOGOu4nBBbpnRTgkrFb8khTMWJJdSAZPimhTT9M6WLKNl-oas6_jl-4CRPuehw3nMge4i9nNOOfg5Dz1duvEBH-kW-4gj9X2k9RnpAcNw7vOvc0eukv-YsPjnirxt1sfmpdy_bndNvS8zGDWXDoXWivEY28hasFpbbkPiCQVYAOdsElwhWt96Dtwkn6LSwdgQpeCtESvy8PebEfH0OebOj98nJbgFxsQPmWVLCQ</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Ramesha, K.</creator><creator>Patnaik, L.M.</creator><creator>Ramesha, K.</creator><creator>Srikanth, N.</creator><creator>Venugopal, K.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>Advanced Biometric Identification on Face, Gender and Age Recognition</title><author>Ramesha, K. ; Patnaik, L.M. ; Ramesha, K. ; Srikanth, N. ; Venugopal, K.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9e366502ddbd0b1866828cf2fe31811998f325ee8aba2127fafd56c78cd432b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Age Classification</topic><topic>Artificial neural networks</topic><topic>Artificial NeuralNetworks</topic><topic>Biometrics</topic><topic>Eyes</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Gender Classification</topic><topic>Humans</topic><topic>Image recognition</topic><topic>Mouth</topic><topic>Nose</topic><topic>Shape</topic><topic>Shape and Texture Transformation</topic><topic>Wrinkle Texture</topic><toplevel>online_resources</toplevel><creatorcontrib>Ramesha, K.</creatorcontrib><creatorcontrib>Patnaik, L.M.</creatorcontrib><creatorcontrib>Ramesha, K.</creatorcontrib><creatorcontrib>Srikanth, N.</creatorcontrib><creatorcontrib>Venugopal, K.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramesha, K.</au><au>Patnaik, L.M.</au><au>Ramesha, K.</au><au>Srikanth, N.</au><au>Venugopal, K.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Advanced Biometric Identification on Face, Gender and Age Recognition</atitle><btitle>2009 International Conference on Advances in Recent Technologies in Communication and Computing</btitle><stitle>ARTCOM</stitle><date>2009-10</date><risdate>2009</risdate><spage>23</spage><epage>27</epage><pages>23-27</pages><isbn>9781424451043</isbn><isbn>1424451043</isbn><eisbn>0769538452</eisbn><eisbn>9780769538457</eisbn><abstract>The face recognition system attains good accuracy in personal identification when they are provided with a large set of training sets. In this paper, we proposed Advanced Biometric Identification on Face, Gender and Age Recognition (ABIFGAR)algorithm for face recognition that yields good results when only small training set is available and it works even with a raining set as small as one image per person. The process is divided into three phases: Pre-processing, Feature Extraction and Classification. The geometric features from a facial image are obtained based on the symmetry of human faces and the variation of gray levels, the positions of eyes, nose and mouth are located by applying the Canny edge operator. The gender and age are classified based on shape and texture information using Posteriori Class Probability and Artificial Neural Network respectively. It is observed that the face recognition is 100%, the gender and age classification is around 98% and 94% respectively.</abstract><pub>IEEE</pub><doi>10.1109/ARTCom.2009.21</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424451043
ispartof 2009 International Conference on Advances in Recent Technologies in Communication and Computing, 2009, p.23-27
issn
language eng
recordid cdi_ieee_primary_5328100
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Age Classification
Artificial neural networks
Artificial NeuralNetworks
Biometrics
Eyes
Face recognition
Feature extraction
Gender Classification
Humans
Image recognition
Mouth
Nose
Shape
Shape and Texture Transformation
Wrinkle Texture
title Advanced Biometric Identification on Face, Gender and Age Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Advanced%20Biometric%20Identification%20on%20Face,%20Gender%20and%20Age%20Recognition&rft.btitle=2009%20International%20Conference%20on%20Advances%20in%20Recent%20Technologies%20in%20Communication%20and%20Computing&rft.au=Ramesha,%20K.&rft.date=2009-10&rft.spage=23&rft.epage=27&rft.pages=23-27&rft.isbn=9781424451043&rft.isbn_list=1424451043&rft_id=info:doi/10.1109/ARTCom.2009.21&rft_dat=%3Cieee_6IE%3E5328100%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769538452&rft.eisbn_list=9780769538457&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5328100&rfr_iscdi=true