Fuzzy logic approximation to unknown dynamic systems via input-output measurements

An online fuzzy logic approximator for unknown, single-input-single-output, nonlinear dynamic systems is proposed in this paper. The proposed approximator consists of finite numbers of fuzzy variables which are continuous and well-defined in the system input and output domain, and a small size of ru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu, K., Lewis, F.L., Yu, I.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4248 vol.6
container_issue
container_start_page 4243
container_title
container_volume 6
creator Liu, K.
Lewis, F.L.
Yu, I.H.
description An online fuzzy logic approximator for unknown, single-input-single-output, nonlinear dynamic systems is proposed in this paper. The proposed approximator consists of finite numbers of fuzzy variables which are continuous and well-defined in the system input and output domain, and a small size of rule base which contains unknown parameters. Using the measurable input-output data pairs, all the unknown parameters in rule base will be tuned to the "best" values, and thus, the fuzzy model is guaranteed to have an identical transfer function with which the original unknown nonlinear dynamic system has.
doi_str_mv 10.1109/ACC.1995.532733
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_532733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>532733</ieee_id><sourcerecordid>532733</sourcerecordid><originalsourceid>FETCH-ieee_primary_5327333</originalsourceid><addsrcrecordid>eNp9jrsKwjAARQMi-OosOOUHWpOmoWaUojiLewkaJdokJQ81_XoDOnuXM9zD5QKwxKjAGLH1tmkKzBgtKClrQkZghuoNImVVUToBmXN3lEJpzSoyBcd9GIYIO3OTZ8j73pq3VNxLo6E3MOiHNi8NL1FzlQQXnRfKwafkUOo--NwEnwCV4C5YoYT2bgHGV945kf04B6v97tQccimEaHub9m1sv-_I3_IDKMFAGA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy logic approximation to unknown dynamic systems via input-output measurements</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liu, K. ; Lewis, F.L. ; Yu, I.H.</creator><creatorcontrib>Liu, K. ; Lewis, F.L. ; Yu, I.H.</creatorcontrib><description>An online fuzzy logic approximator for unknown, single-input-single-output, nonlinear dynamic systems is proposed in this paper. The proposed approximator consists of finite numbers of fuzzy variables which are continuous and well-defined in the system input and output domain, and a small size of rule base which contains unknown parameters. Using the measurable input-output data pairs, all the unknown parameters in rule base will be tuned to the "best" values, and thus, the fuzzy model is guaranteed to have an identical transfer function with which the original unknown nonlinear dynamic system has.</description><identifier>ISBN: 0780324455</identifier><identifier>ISBN: 9780780324459</identifier><identifier>DOI: 10.1109/ACC.1995.532733</identifier><language>eng</language><publisher>IEEE</publisher><subject>Filters ; Fuzzy logic ; Fuzzy systems ; Nonlinear dynamical systems ; Performance analysis ; Piecewise linear approximation ; Power system modeling ; Robotics and automation ; Stability criteria ; Transfer functions</subject><ispartof>Proceedings of 1995 American Control Conference - ACC'95, 1995, Vol.6, p.4243-4248 vol.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/532733$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/532733$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, K.</creatorcontrib><creatorcontrib>Lewis, F.L.</creatorcontrib><creatorcontrib>Yu, I.H.</creatorcontrib><title>Fuzzy logic approximation to unknown dynamic systems via input-output measurements</title><title>Proceedings of 1995 American Control Conference - ACC'95</title><addtitle>ACC</addtitle><description>An online fuzzy logic approximator for unknown, single-input-single-output, nonlinear dynamic systems is proposed in this paper. The proposed approximator consists of finite numbers of fuzzy variables which are continuous and well-defined in the system input and output domain, and a small size of rule base which contains unknown parameters. Using the measurable input-output data pairs, all the unknown parameters in rule base will be tuned to the "best" values, and thus, the fuzzy model is guaranteed to have an identical transfer function with which the original unknown nonlinear dynamic system has.</description><subject>Filters</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Nonlinear dynamical systems</subject><subject>Performance analysis</subject><subject>Piecewise linear approximation</subject><subject>Power system modeling</subject><subject>Robotics and automation</subject><subject>Stability criteria</subject><subject>Transfer functions</subject><isbn>0780324455</isbn><isbn>9780780324459</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jrsKwjAARQMi-OosOOUHWpOmoWaUojiLewkaJdokJQ81_XoDOnuXM9zD5QKwxKjAGLH1tmkKzBgtKClrQkZghuoNImVVUToBmXN3lEJpzSoyBcd9GIYIO3OTZ8j73pq3VNxLo6E3MOiHNi8NL1FzlQQXnRfKwafkUOo--NwEnwCV4C5YoYT2bgHGV945kf04B6v97tQccimEaHub9m1sv-_I3_IDKMFAGA</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Liu, K.</creator><creator>Lewis, F.L.</creator><creator>Yu, I.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Fuzzy logic approximation to unknown dynamic systems via input-output measurements</title><author>Liu, K. ; Lewis, F.L. ; Yu, I.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_5327333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Filters</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Nonlinear dynamical systems</topic><topic>Performance analysis</topic><topic>Piecewise linear approximation</topic><topic>Power system modeling</topic><topic>Robotics and automation</topic><topic>Stability criteria</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, K.</creatorcontrib><creatorcontrib>Lewis, F.L.</creatorcontrib><creatorcontrib>Yu, I.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, K.</au><au>Lewis, F.L.</au><au>Yu, I.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy logic approximation to unknown dynamic systems via input-output measurements</atitle><btitle>Proceedings of 1995 American Control Conference - ACC'95</btitle><stitle>ACC</stitle><date>1995</date><risdate>1995</risdate><volume>6</volume><spage>4243</spage><epage>4248 vol.6</epage><pages>4243-4248 vol.6</pages><isbn>0780324455</isbn><isbn>9780780324459</isbn><abstract>An online fuzzy logic approximator for unknown, single-input-single-output, nonlinear dynamic systems is proposed in this paper. The proposed approximator consists of finite numbers of fuzzy variables which are continuous and well-defined in the system input and output domain, and a small size of rule base which contains unknown parameters. Using the measurable input-output data pairs, all the unknown parameters in rule base will be tuned to the "best" values, and thus, the fuzzy model is guaranteed to have an identical transfer function with which the original unknown nonlinear dynamic system has.</abstract><pub>IEEE</pub><doi>10.1109/ACC.1995.532733</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780324455
ispartof Proceedings of 1995 American Control Conference - ACC'95, 1995, Vol.6, p.4243-4248 vol.6
issn
language eng
recordid cdi_ieee_primary_532733
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Filters
Fuzzy logic
Fuzzy systems
Nonlinear dynamical systems
Performance analysis
Piecewise linear approximation
Power system modeling
Robotics and automation
Stability criteria
Transfer functions
title Fuzzy logic approximation to unknown dynamic systems via input-output measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20logic%20approximation%20to%20unknown%20dynamic%20systems%20via%20input-output%20measurements&rft.btitle=Proceedings%20of%201995%20American%20Control%20Conference%20-%20ACC'95&rft.au=Liu,%20K.&rft.date=1995&rft.volume=6&rft.spage=4243&rft.epage=4248%20vol.6&rft.pages=4243-4248%20vol.6&rft.isbn=0780324455&rft.isbn_list=9780780324459&rft_id=info:doi/10.1109/ACC.1995.532733&rft_dat=%3Cieee_6IE%3E532733%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=532733&rfr_iscdi=true