Human Motion Analysis

We propose a novel motion analysis algorithm by using the mean-shift segmentation and motion estimation technique. Mean shift algorithm is frequently used to extract objects from video according to its efficiency and robustness of non-rigid object tracking. For diminishing the computational complexi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tsai, J.C., Tzu-Lin Wong, Hsing-Ying Zhong, Shih-Ming Chang, Shih, T.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 376
container_issue
container_start_page 373
container_title
container_volume
creator Tsai, J.C.
Tzu-Lin Wong
Hsing-Ying Zhong
Shih-Ming Chang
Shih, T.K.
description We propose a novel motion analysis algorithm by using the mean-shift segmentation and motion estimation technique. Mean shift algorithm is frequently used to extract objects from video according to its efficiency and robustness of non-rigid object tracking. For diminishing the computational complexity in searching process, an efficient block matching algorithm: cross-diamond-hexagonal search algorithm was used. In the motion analysis procedure, the stick figure of object obtained by thinning process is treated as guidance to gather the statistics of motion information. The experimental results show that the proposed method provides precise description of the behavior of object in several video sequences.
doi_str_mv 10.1109/UIC-ATC.2009.107
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5319210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5319210</ieee_id><sourcerecordid>5319210</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5b2741e21b89bb2b9e41f5c5baa831a8e8dc28c21e625c17ede239f14d8eac293</originalsourceid><addsrcrecordid>eNotjsFKAzEQQCMiaGuPguClP7DrzCTZZI7LorZQ8bKeS5KdhUi7laYe-vcW9F3e7fGUekSoEYGfP9dd1fZdTQBcI7grNQPXsNVOO3utZmjIGMNAdKsWpXzBBWM1Nu5OPax-9mFavh9O-TAt2ynsziWXe3Uzhl2Rxb_nqn996btVtfl4W3ftpsoMp8pGcgaFMHqOkSKLwdEmG0PwGoMXPyTyiVAasgmdDEKaRzSDl5CI9Vw9_WWziGy_j3kfjuft5YwJQf8CbW45ng</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Human Motion Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tsai, J.C. ; Tzu-Lin Wong ; Hsing-Ying Zhong ; Shih-Ming Chang ; Shih, T.K.</creator><creatorcontrib>Tsai, J.C. ; Tzu-Lin Wong ; Hsing-Ying Zhong ; Shih-Ming Chang ; Shih, T.K.</creatorcontrib><description>We propose a novel motion analysis algorithm by using the mean-shift segmentation and motion estimation technique. Mean shift algorithm is frequently used to extract objects from video according to its efficiency and robustness of non-rigid object tracking. For diminishing the computational complexity in searching process, an efficient block matching algorithm: cross-diamond-hexagonal search algorithm was used. In the motion analysis procedure, the stick figure of object obtained by thinning process is treated as guidance to gather the statistics of motion information. The experimental results show that the proposed method provides precise description of the behavior of object in several video sequences.</description><identifier>ISBN: 1424449022</identifier><identifier>ISBN: 9781424449026</identifier><identifier>EISBN: 0769537375</identifier><identifier>EISBN: 9780769537375</identifier><identifier>DOI: 10.1109/UIC-ATC.2009.107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Computer science education ; Filtering ; Humans ; Motion analysis ; Motion estimation ; Pervasive computing ; Physics computing ; Robustness ; Tracking</subject><ispartof>2009 Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing, 2009, p.373-376</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5319210$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5319210$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsai, J.C.</creatorcontrib><creatorcontrib>Tzu-Lin Wong</creatorcontrib><creatorcontrib>Hsing-Ying Zhong</creatorcontrib><creatorcontrib>Shih-Ming Chang</creatorcontrib><creatorcontrib>Shih, T.K.</creatorcontrib><title>Human Motion Analysis</title><title>2009 Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing</title><addtitle>UICATC</addtitle><description>We propose a novel motion analysis algorithm by using the mean-shift segmentation and motion estimation technique. Mean shift algorithm is frequently used to extract objects from video according to its efficiency and robustness of non-rigid object tracking. For diminishing the computational complexity in searching process, an efficient block matching algorithm: cross-diamond-hexagonal search algorithm was used. In the motion analysis procedure, the stick figure of object obtained by thinning process is treated as guidance to gather the statistics of motion information. The experimental results show that the proposed method provides precise description of the behavior of object in several video sequences.</description><subject>Clustering algorithms</subject><subject>Computer science education</subject><subject>Filtering</subject><subject>Humans</subject><subject>Motion analysis</subject><subject>Motion estimation</subject><subject>Pervasive computing</subject><subject>Physics computing</subject><subject>Robustness</subject><subject>Tracking</subject><isbn>1424449022</isbn><isbn>9781424449026</isbn><isbn>0769537375</isbn><isbn>9780769537375</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjsFKAzEQQCMiaGuPguClP7DrzCTZZI7LorZQ8bKeS5KdhUi7laYe-vcW9F3e7fGUekSoEYGfP9dd1fZdTQBcI7grNQPXsNVOO3utZmjIGMNAdKsWpXzBBWM1Nu5OPax-9mFavh9O-TAt2ynsziWXe3Uzhl2Rxb_nqn996btVtfl4W3ftpsoMp8pGcgaFMHqOkSKLwdEmG0PwGoMXPyTyiVAasgmdDEKaRzSDl5CI9Vw9_WWziGy_j3kfjuft5YwJQf8CbW45ng</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Tsai, J.C.</creator><creator>Tzu-Lin Wong</creator><creator>Hsing-Ying Zhong</creator><creator>Shih-Ming Chang</creator><creator>Shih, T.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>Human Motion Analysis</title><author>Tsai, J.C. ; Tzu-Lin Wong ; Hsing-Ying Zhong ; Shih-Ming Chang ; Shih, T.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5b2741e21b89bb2b9e41f5c5baa831a8e8dc28c21e625c17ede239f14d8eac293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clustering algorithms</topic><topic>Computer science education</topic><topic>Filtering</topic><topic>Humans</topic><topic>Motion analysis</topic><topic>Motion estimation</topic><topic>Pervasive computing</topic><topic>Physics computing</topic><topic>Robustness</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Tsai, J.C.</creatorcontrib><creatorcontrib>Tzu-Lin Wong</creatorcontrib><creatorcontrib>Hsing-Ying Zhong</creatorcontrib><creatorcontrib>Shih-Ming Chang</creatorcontrib><creatorcontrib>Shih, T.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsai, J.C.</au><au>Tzu-Lin Wong</au><au>Hsing-Ying Zhong</au><au>Shih-Ming Chang</au><au>Shih, T.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Human Motion Analysis</atitle><btitle>2009 Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing</btitle><stitle>UICATC</stitle><date>2009-07</date><risdate>2009</risdate><spage>373</spage><epage>376</epage><pages>373-376</pages><isbn>1424449022</isbn><isbn>9781424449026</isbn><eisbn>0769537375</eisbn><eisbn>9780769537375</eisbn><abstract>We propose a novel motion analysis algorithm by using the mean-shift segmentation and motion estimation technique. Mean shift algorithm is frequently used to extract objects from video according to its efficiency and robustness of non-rigid object tracking. For diminishing the computational complexity in searching process, an efficient block matching algorithm: cross-diamond-hexagonal search algorithm was used. In the motion analysis procedure, the stick figure of object obtained by thinning process is treated as guidance to gather the statistics of motion information. The experimental results show that the proposed method provides precise description of the behavior of object in several video sequences.</abstract><pub>IEEE</pub><doi>10.1109/UIC-ATC.2009.107</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424449022
ispartof 2009 Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing, 2009, p.373-376
issn
language eng
recordid cdi_ieee_primary_5319210
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Computer science education
Filtering
Humans
Motion analysis
Motion estimation
Pervasive computing
Physics computing
Robustness
Tracking
title Human Motion Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Human%20Motion%20Analysis&rft.btitle=2009%20Symposia%20and%20Workshops%20on%20Ubiquitous,%20Autonomic%20and%20Trusted%20Computing&rft.au=Tsai,%20J.C.&rft.date=2009-07&rft.spage=373&rft.epage=376&rft.pages=373-376&rft.isbn=1424449022&rft.isbn_list=9781424449026&rft_id=info:doi/10.1109/UIC-ATC.2009.107&rft_dat=%3Cieee_6IE%3E5319210%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769537375&rft.eisbn_list=9780769537375&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5319210&rfr_iscdi=true