An application of feature selection to on-line P300 detection in brain-computer interface

We propose a new EEG-based wireless brain computer interface (BCI) with which subjects can ldquomind-typerdquo text on a computer screen. The application is based on detecting P300 event-related potentials in EEG signals recorded on the scalp of the subject. The BCI uses a linear classifier which ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chumerin, N., Manyakov, N.V., Combaz, A., Suykens, J.A.K., Van Hulle, M.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Chumerin, N.
Manyakov, N.V.
Combaz, A.
Suykens, J.A.K.
Van Hulle, M.M.
description We propose a new EEG-based wireless brain computer interface (BCI) with which subjects can ldquomind-typerdquo text on a computer screen. The application is based on detecting P300 event-related potentials in EEG signals recorded on the scalp of the subject. The BCI uses a linear classifier which takes as input a set of simple amplitude-based features that are optimally selected using the group method of data handling (GMDH) feature selection procedure. The accuracy of the presented system is comparable to the state-of-the-art systems for on-line P300 detection, but with the additional benefit that its much simpler design supports a power-efficient on-chip implementation.
doi_str_mv 10.1109/MLSP.2009.5306244
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5306244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5306244</ieee_id><sourcerecordid>5306244</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1664-a4f71d6792838a987bd61b16dc720d49b6be72636d0fd469da591367ae6518cd3</originalsourceid><addsrcrecordid>eNo1UNtKxDAUjDdwd90PEF_yA6k5SZrL47J4g4oLKujTkianEOm2pe0--PcWrS8zwwwMwxByDTwD4O72uXjdZYJzl-WSa6HUCVk7Y0FNUjll1SlZCGksc8J-nJHlf2DEOVlAngMTuYJLshyGL86VkAAL8rlpqO-6OgU_prahbUUr9OOxRzpgjeHXHFvaNqxODdKd5JxGHOckNbTsfWpYaA_dccR-ciasfMArclH5esD1zCvyfn_3tn1kxcvD03ZTsARaK-ZVZSBqM42W1jtryqihBB2DETwqV-oSjdBSR15FpV30uQOpjUedgw1RrsjNX29CxH3Xp4Pvv_fzRfIHM5tVsg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An application of feature selection to on-line P300 detection in brain-computer interface</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chumerin, N. ; Manyakov, N.V. ; Combaz, A. ; Suykens, J.A.K. ; Van Hulle, M.M.</creator><creatorcontrib>Chumerin, N. ; Manyakov, N.V. ; Combaz, A. ; Suykens, J.A.K. ; Van Hulle, M.M.</creatorcontrib><description>We propose a new EEG-based wireless brain computer interface (BCI) with which subjects can ldquomind-typerdquo text on a computer screen. The application is based on detecting P300 event-related potentials in EEG signals recorded on the scalp of the subject. The BCI uses a linear classifier which takes as input a set of simple amplitude-based features that are optimally selected using the group method of data handling (GMDH) feature selection procedure. The accuracy of the presented system is comparable to the state-of-the-art systems for on-line P300 detection, but with the additional benefit that its much simpler design supports a power-efficient on-chip implementation.</description><identifier>ISSN: 1551-2541</identifier><identifier>ISBN: 1424449472</identifier><identifier>ISBN: 9781424449477</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 9781424449484</identifier><identifier>EISBN: 1424449480</identifier><identifier>DOI: 10.1109/MLSP.2009.5306244</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain computer interfaces</subject><ispartof>2009 IEEE International Workshop on Machine Learning for Signal Processing, 2009, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5306244$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5306244$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chumerin, N.</creatorcontrib><creatorcontrib>Manyakov, N.V.</creatorcontrib><creatorcontrib>Combaz, A.</creatorcontrib><creatorcontrib>Suykens, J.A.K.</creatorcontrib><creatorcontrib>Van Hulle, M.M.</creatorcontrib><title>An application of feature selection to on-line P300 detection in brain-computer interface</title><title>2009 IEEE International Workshop on Machine Learning for Signal Processing</title><addtitle>MLSP</addtitle><description>We propose a new EEG-based wireless brain computer interface (BCI) with which subjects can ldquomind-typerdquo text on a computer screen. The application is based on detecting P300 event-related potentials in EEG signals recorded on the scalp of the subject. The BCI uses a linear classifier which takes as input a set of simple amplitude-based features that are optimally selected using the group method of data handling (GMDH) feature selection procedure. The accuracy of the presented system is comparable to the state-of-the-art systems for on-line P300 detection, but with the additional benefit that its much simpler design supports a power-efficient on-chip implementation.</description><subject>Brain computer interfaces</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>1424449472</isbn><isbn>9781424449477</isbn><isbn>9781424449484</isbn><isbn>1424449480</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtKxDAUjDdwd90PEF_yA6k5SZrL47J4g4oLKujTkianEOm2pe0--PcWrS8zwwwMwxByDTwD4O72uXjdZYJzl-WSa6HUCVk7Y0FNUjll1SlZCGksc8J-nJHlf2DEOVlAngMTuYJLshyGL86VkAAL8rlpqO-6OgU_prahbUUr9OOxRzpgjeHXHFvaNqxODdKd5JxGHOckNbTsfWpYaA_dccR-ciasfMArclH5esD1zCvyfn_3tn1kxcvD03ZTsARaK-ZVZSBqM42W1jtryqihBB2DETwqV-oSjdBSR15FpV30uQOpjUedgw1RrsjNX29CxH3Xp4Pvv_fzRfIHM5tVsg</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Chumerin, N.</creator><creator>Manyakov, N.V.</creator><creator>Combaz, A.</creator><creator>Suykens, J.A.K.</creator><creator>Van Hulle, M.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20090901</creationdate><title>An application of feature selection to on-line P300 detection in brain-computer interface</title><author>Chumerin, N. ; Manyakov, N.V. ; Combaz, A. ; Suykens, J.A.K. ; Van Hulle, M.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1664-a4f71d6792838a987bd61b16dc720d49b6be72636d0fd469da591367ae6518cd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Brain computer interfaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Chumerin, N.</creatorcontrib><creatorcontrib>Manyakov, N.V.</creatorcontrib><creatorcontrib>Combaz, A.</creatorcontrib><creatorcontrib>Suykens, J.A.K.</creatorcontrib><creatorcontrib>Van Hulle, M.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chumerin, N.</au><au>Manyakov, N.V.</au><au>Combaz, A.</au><au>Suykens, J.A.K.</au><au>Van Hulle, M.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An application of feature selection to on-line P300 detection in brain-computer interface</atitle><btitle>2009 IEEE International Workshop on Machine Learning for Signal Processing</btitle><stitle>MLSP</stitle><date>2009-09-01</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><isbn>1424449472</isbn><isbn>9781424449477</isbn><eisbn>9781424449484</eisbn><eisbn>1424449480</eisbn><abstract>We propose a new EEG-based wireless brain computer interface (BCI) with which subjects can ldquomind-typerdquo text on a computer screen. The application is based on detecting P300 event-related potentials in EEG signals recorded on the scalp of the subject. The BCI uses a linear classifier which takes as input a set of simple amplitude-based features that are optimally selected using the group method of data handling (GMDH) feature selection procedure. The accuracy of the presented system is comparable to the state-of-the-art systems for on-line P300 detection, but with the additional benefit that its much simpler design supports a power-efficient on-chip implementation.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2009.5306244</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-2541
ispartof 2009 IEEE International Workshop on Machine Learning for Signal Processing, 2009, p.1-6
issn 1551-2541
2378-928X
language eng
recordid cdi_ieee_primary_5306244
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Brain computer interfaces
title An application of feature selection to on-line P300 detection in brain-computer interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20application%20of%20feature%20selection%20to%20on-line%20P300%20detection%20in%20brain-computer%20interface&rft.btitle=2009%20IEEE%20International%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing&rft.au=Chumerin,%20N.&rft.date=2009-09-01&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1551-2541&rft.eissn=2378-928X&rft.isbn=1424449472&rft.isbn_list=9781424449477&rft_id=info:doi/10.1109/MLSP.2009.5306244&rft_dat=%3Cieee_6IE%3E5306244%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424449484&rft.eisbn_list=1424449480&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5306244&rfr_iscdi=true