Experimental Study on Selection of Aperture Pattern Based on Image Statistics
This paper presents optimal aperture pattern selection method, based on the statistical model of images and Kullback-Leiber (KL) divergence algorithm. The approach is verified by experimental analysis. Different aperture patterns have different sensitivities for depth information and different abili...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Xiao, Lu Xu, Zengpu Bi, Dexue |
description | This paper presents optimal aperture pattern selection method, based on the statistical model of images and Kullback-Leiber (KL) divergence algorithm. The approach is verified by experimental analysis. Different aperture patterns have different sensitivities for depth information and different abilities to distinguish between depths, that is, it's helpful to distinguish and extract depth information. The KL divergence is computed between the blurry image distributions, which obtained by the statistical model of image, in the frequency domain at any two depths, and evaluated the comprehensive ability of the pattern to distinguish the depth information through experiment. Compare to different patterns by this evaluation, the relative best one between them can be find. The method proposed is applied to select a relative good one between several aperture patterns and its feasibility is confirmed by experimental results. |
doi_str_mv | 10.1109/CISP.2009.5304912 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5304912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5304912</ieee_id><sourcerecordid>5304912</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d413990c2a28dd3c9a8751d24990fb900b1b751e00bffb3b7653d62863fd03233</originalsourceid><addsrcrecordid>eNo9kFFrwjAUhTOGsOn8AWMv-QN1SW7SNo-uOFdwTKjvkjY3I1CrNBHmv19ksqd77uG7l8Mh5JmzBedMv1Z1s10IxvRCAZOaizsy5VJIKTlwdf-_CA0TMr2CmnEQxQOZh-BbJnKltCrUI_lc_Zxw9AccoulpE8_2Qo8DbbDHLvqkjo4uExHPI9KtiRHHgb6ZgPaK1QfzjenKRB-i78ITmTjTB5zf5ozs3le76iPbfK3rarnJvGYxsyllCtQJI0prodOmLBS3QibTtZqxlrfJwCSca6EtcgU2F2UOzjIQADPy8vfWI-L-lOKb8bK_VQG_lS9Ppg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Experimental Study on Selection of Aperture Pattern Based on Image Statistics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiao, Lu ; Xu, Zengpu ; Bi, Dexue</creator><creatorcontrib>Xiao, Lu ; Xu, Zengpu ; Bi, Dexue</creatorcontrib><description>This paper presents optimal aperture pattern selection method, based on the statistical model of images and Kullback-Leiber (KL) divergence algorithm. The approach is verified by experimental analysis. Different aperture patterns have different sensitivities for depth information and different abilities to distinguish between depths, that is, it's helpful to distinguish and extract depth information. The KL divergence is computed between the blurry image distributions, which obtained by the statistical model of image, in the frequency domain at any two depths, and evaluated the comprehensive ability of the pattern to distinguish the depth information through experiment. Compare to different patterns by this evaluation, the relative best one between them can be find. The method proposed is applied to select a relative good one between several aperture patterns and its feasibility is confirmed by experimental results.</description><identifier>ISBN: 1424441293</identifier><identifier>ISBN: 9781424441297</identifier><identifier>EISBN: 1424441315</identifier><identifier>EISBN: 9781424441310</identifier><identifier>DOI: 10.1109/CISP.2009.5304912</identifier><identifier>LCCN: 2009901327</identifier><language>eng</language><publisher>IEEE</publisher><subject>Apertures ; Bismuth ; Cameras ; Convolution ; Data mining ; Filters ; Layout ; Lenses ; Mechanical engineering ; Statistics</subject><ispartof>2009 2nd International Congress on Image and Signal Processing, 2009, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5304912$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5304912$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Lu</creatorcontrib><creatorcontrib>Xu, Zengpu</creatorcontrib><creatorcontrib>Bi, Dexue</creatorcontrib><title>Experimental Study on Selection of Aperture Pattern Based on Image Statistics</title><title>2009 2nd International Congress on Image and Signal Processing</title><addtitle>CISP</addtitle><description>This paper presents optimal aperture pattern selection method, based on the statistical model of images and Kullback-Leiber (KL) divergence algorithm. The approach is verified by experimental analysis. Different aperture patterns have different sensitivities for depth information and different abilities to distinguish between depths, that is, it's helpful to distinguish and extract depth information. The KL divergence is computed between the blurry image distributions, which obtained by the statistical model of image, in the frequency domain at any two depths, and evaluated the comprehensive ability of the pattern to distinguish the depth information through experiment. Compare to different patterns by this evaluation, the relative best one between them can be find. The method proposed is applied to select a relative good one between several aperture patterns and its feasibility is confirmed by experimental results.</description><subject>Apertures</subject><subject>Bismuth</subject><subject>Cameras</subject><subject>Convolution</subject><subject>Data mining</subject><subject>Filters</subject><subject>Layout</subject><subject>Lenses</subject><subject>Mechanical engineering</subject><subject>Statistics</subject><isbn>1424441293</isbn><isbn>9781424441297</isbn><isbn>1424441315</isbn><isbn>9781424441310</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kFFrwjAUhTOGsOn8AWMv-QN1SW7SNo-uOFdwTKjvkjY3I1CrNBHmv19ksqd77uG7l8Mh5JmzBedMv1Z1s10IxvRCAZOaizsy5VJIKTlwdf-_CA0TMr2CmnEQxQOZh-BbJnKltCrUI_lc_Zxw9AccoulpE8_2Qo8DbbDHLvqkjo4uExHPI9KtiRHHgb6ZgPaK1QfzjenKRB-i78ITmTjTB5zf5ozs3le76iPbfK3rarnJvGYxsyllCtQJI0prodOmLBS3QibTtZqxlrfJwCSca6EtcgU2F2UOzjIQADPy8vfWI-L-lOKb8bK_VQG_lS9Ppg</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Xiao, Lu</creator><creator>Xu, Zengpu</creator><creator>Bi, Dexue</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>Experimental Study on Selection of Aperture Pattern Based on Image Statistics</title><author>Xiao, Lu ; Xu, Zengpu ; Bi, Dexue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d413990c2a28dd3c9a8751d24990fb900b1b751e00bffb3b7653d62863fd03233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Apertures</topic><topic>Bismuth</topic><topic>Cameras</topic><topic>Convolution</topic><topic>Data mining</topic><topic>Filters</topic><topic>Layout</topic><topic>Lenses</topic><topic>Mechanical engineering</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Lu</creatorcontrib><creatorcontrib>Xu, Zengpu</creatorcontrib><creatorcontrib>Bi, Dexue</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Lu</au><au>Xu, Zengpu</au><au>Bi, Dexue</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Experimental Study on Selection of Aperture Pattern Based on Image Statistics</atitle><btitle>2009 2nd International Congress on Image and Signal Processing</btitle><stitle>CISP</stitle><date>2009-10</date><risdate>2009</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1424441293</isbn><isbn>9781424441297</isbn><eisbn>1424441315</eisbn><eisbn>9781424441310</eisbn><abstract>This paper presents optimal aperture pattern selection method, based on the statistical model of images and Kullback-Leiber (KL) divergence algorithm. The approach is verified by experimental analysis. Different aperture patterns have different sensitivities for depth information and different abilities to distinguish between depths, that is, it's helpful to distinguish and extract depth information. The KL divergence is computed between the blurry image distributions, which obtained by the statistical model of image, in the frequency domain at any two depths, and evaluated the comprehensive ability of the pattern to distinguish the depth information through experiment. Compare to different patterns by this evaluation, the relative best one between them can be find. The method proposed is applied to select a relative good one between several aperture patterns and its feasibility is confirmed by experimental results.</abstract><pub>IEEE</pub><doi>10.1109/CISP.2009.5304912</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424441293 |
ispartof | 2009 2nd International Congress on Image and Signal Processing, 2009, p.1-5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5304912 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Apertures Bismuth Cameras Convolution Data mining Filters Layout Lenses Mechanical engineering Statistics |
title | Experimental Study on Selection of Aperture Pattern Based on Image Statistics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Experimental%20Study%20on%20Selection%20of%20Aperture%20Pattern%20Based%20on%20Image%20Statistics&rft.btitle=2009%202nd%20International%20Congress%20on%20Image%20and%20Signal%20Processing&rft.au=Xiao,%20Lu&rft.date=2009-10&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1424441293&rft.isbn_list=9781424441297&rft_id=info:doi/10.1109/CISP.2009.5304912&rft_dat=%3Cieee_6IE%3E5304912%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441315&rft.eisbn_list=9781424441310&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5304912&rfr_iscdi=true |