Experimental Study on Selection of Aperture Pattern Based on Image Statistics

This paper presents optimal aperture pattern selection method, based on the statistical model of images and Kullback-Leiber (KL) divergence algorithm. The approach is verified by experimental analysis. Different aperture patterns have different sensitivities for depth information and different abili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiao, Lu, Xu, Zengpu, Bi, Dexue
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Xiao, Lu
Xu, Zengpu
Bi, Dexue
description This paper presents optimal aperture pattern selection method, based on the statistical model of images and Kullback-Leiber (KL) divergence algorithm. The approach is verified by experimental analysis. Different aperture patterns have different sensitivities for depth information and different abilities to distinguish between depths, that is, it's helpful to distinguish and extract depth information. The KL divergence is computed between the blurry image distributions, which obtained by the statistical model of image, in the frequency domain at any two depths, and evaluated the comprehensive ability of the pattern to distinguish the depth information through experiment. Compare to different patterns by this evaluation, the relative best one between them can be find. The method proposed is applied to select a relative good one between several aperture patterns and its feasibility is confirmed by experimental results.
doi_str_mv 10.1109/CISP.2009.5304912
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5304912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5304912</ieee_id><sourcerecordid>5304912</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d413990c2a28dd3c9a8751d24990fb900b1b751e00bffb3b7653d62863fd03233</originalsourceid><addsrcrecordid>eNo9kFFrwjAUhTOGsOn8AWMv-QN1SW7SNo-uOFdwTKjvkjY3I1CrNBHmv19ksqd77uG7l8Mh5JmzBedMv1Z1s10IxvRCAZOaizsy5VJIKTlwdf-_CA0TMr2CmnEQxQOZh-BbJnKltCrUI_lc_Zxw9AccoulpE8_2Qo8DbbDHLvqkjo4uExHPI9KtiRHHgb6ZgPaK1QfzjenKRB-i78ITmTjTB5zf5ozs3le76iPbfK3rarnJvGYxsyllCtQJI0prodOmLBS3QibTtZqxlrfJwCSca6EtcgU2F2UOzjIQADPy8vfWI-L-lOKb8bK_VQG_lS9Ppg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Experimental Study on Selection of Aperture Pattern Based on Image Statistics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiao, Lu ; Xu, Zengpu ; Bi, Dexue</creator><creatorcontrib>Xiao, Lu ; Xu, Zengpu ; Bi, Dexue</creatorcontrib><description>This paper presents optimal aperture pattern selection method, based on the statistical model of images and Kullback-Leiber (KL) divergence algorithm. The approach is verified by experimental analysis. Different aperture patterns have different sensitivities for depth information and different abilities to distinguish between depths, that is, it's helpful to distinguish and extract depth information. The KL divergence is computed between the blurry image distributions, which obtained by the statistical model of image, in the frequency domain at any two depths, and evaluated the comprehensive ability of the pattern to distinguish the depth information through experiment. Compare to different patterns by this evaluation, the relative best one between them can be find. The method proposed is applied to select a relative good one between several aperture patterns and its feasibility is confirmed by experimental results.</description><identifier>ISBN: 1424441293</identifier><identifier>ISBN: 9781424441297</identifier><identifier>EISBN: 1424441315</identifier><identifier>EISBN: 9781424441310</identifier><identifier>DOI: 10.1109/CISP.2009.5304912</identifier><identifier>LCCN: 2009901327</identifier><language>eng</language><publisher>IEEE</publisher><subject>Apertures ; Bismuth ; Cameras ; Convolution ; Data mining ; Filters ; Layout ; Lenses ; Mechanical engineering ; Statistics</subject><ispartof>2009 2nd International Congress on Image and Signal Processing, 2009, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5304912$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5304912$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Lu</creatorcontrib><creatorcontrib>Xu, Zengpu</creatorcontrib><creatorcontrib>Bi, Dexue</creatorcontrib><title>Experimental Study on Selection of Aperture Pattern Based on Image Statistics</title><title>2009 2nd International Congress on Image and Signal Processing</title><addtitle>CISP</addtitle><description>This paper presents optimal aperture pattern selection method, based on the statistical model of images and Kullback-Leiber (KL) divergence algorithm. The approach is verified by experimental analysis. Different aperture patterns have different sensitivities for depth information and different abilities to distinguish between depths, that is, it's helpful to distinguish and extract depth information. The KL divergence is computed between the blurry image distributions, which obtained by the statistical model of image, in the frequency domain at any two depths, and evaluated the comprehensive ability of the pattern to distinguish the depth information through experiment. Compare to different patterns by this evaluation, the relative best one between them can be find. The method proposed is applied to select a relative good one between several aperture patterns and its feasibility is confirmed by experimental results.</description><subject>Apertures</subject><subject>Bismuth</subject><subject>Cameras</subject><subject>Convolution</subject><subject>Data mining</subject><subject>Filters</subject><subject>Layout</subject><subject>Lenses</subject><subject>Mechanical engineering</subject><subject>Statistics</subject><isbn>1424441293</isbn><isbn>9781424441297</isbn><isbn>1424441315</isbn><isbn>9781424441310</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kFFrwjAUhTOGsOn8AWMv-QN1SW7SNo-uOFdwTKjvkjY3I1CrNBHmv19ksqd77uG7l8Mh5JmzBedMv1Z1s10IxvRCAZOaizsy5VJIKTlwdf-_CA0TMr2CmnEQxQOZh-BbJnKltCrUI_lc_Zxw9AccoulpE8_2Qo8DbbDHLvqkjo4uExHPI9KtiRHHgb6ZgPaK1QfzjenKRB-i78ITmTjTB5zf5ozs3le76iPbfK3rarnJvGYxsyllCtQJI0prodOmLBS3QibTtZqxlrfJwCSca6EtcgU2F2UOzjIQADPy8vfWI-L-lOKb8bK_VQG_lS9Ppg</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Xiao, Lu</creator><creator>Xu, Zengpu</creator><creator>Bi, Dexue</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>Experimental Study on Selection of Aperture Pattern Based on Image Statistics</title><author>Xiao, Lu ; Xu, Zengpu ; Bi, Dexue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d413990c2a28dd3c9a8751d24990fb900b1b751e00bffb3b7653d62863fd03233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Apertures</topic><topic>Bismuth</topic><topic>Cameras</topic><topic>Convolution</topic><topic>Data mining</topic><topic>Filters</topic><topic>Layout</topic><topic>Lenses</topic><topic>Mechanical engineering</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Lu</creatorcontrib><creatorcontrib>Xu, Zengpu</creatorcontrib><creatorcontrib>Bi, Dexue</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Lu</au><au>Xu, Zengpu</au><au>Bi, Dexue</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Experimental Study on Selection of Aperture Pattern Based on Image Statistics</atitle><btitle>2009 2nd International Congress on Image and Signal Processing</btitle><stitle>CISP</stitle><date>2009-10</date><risdate>2009</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1424441293</isbn><isbn>9781424441297</isbn><eisbn>1424441315</eisbn><eisbn>9781424441310</eisbn><abstract>This paper presents optimal aperture pattern selection method, based on the statistical model of images and Kullback-Leiber (KL) divergence algorithm. The approach is verified by experimental analysis. Different aperture patterns have different sensitivities for depth information and different abilities to distinguish between depths, that is, it's helpful to distinguish and extract depth information. The KL divergence is computed between the blurry image distributions, which obtained by the statistical model of image, in the frequency domain at any two depths, and evaluated the comprehensive ability of the pattern to distinguish the depth information through experiment. Compare to different patterns by this evaluation, the relative best one between them can be find. The method proposed is applied to select a relative good one between several aperture patterns and its feasibility is confirmed by experimental results.</abstract><pub>IEEE</pub><doi>10.1109/CISP.2009.5304912</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424441293
ispartof 2009 2nd International Congress on Image and Signal Processing, 2009, p.1-5
issn
language eng
recordid cdi_ieee_primary_5304912
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Apertures
Bismuth
Cameras
Convolution
Data mining
Filters
Layout
Lenses
Mechanical engineering
Statistics
title Experimental Study on Selection of Aperture Pattern Based on Image Statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Experimental%20Study%20on%20Selection%20of%20Aperture%20Pattern%20Based%20on%20Image%20Statistics&rft.btitle=2009%202nd%20International%20Congress%20on%20Image%20and%20Signal%20Processing&rft.au=Xiao,%20Lu&rft.date=2009-10&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1424441293&rft.isbn_list=9781424441297&rft_id=info:doi/10.1109/CISP.2009.5304912&rft_dat=%3Cieee_6IE%3E5304912%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441315&rft.eisbn_list=9781424441310&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5304912&rfr_iscdi=true