A High-Precision Localization Algorithm by Improved SIFT Key-Points

High-precision localization is getting more and more dependent on computer vision techniques. In this paper a novel high-precision localization algorithm based on improved SIFT (Scale Invariant Feature Transform) key-points is presented. First considering the drawback of original SIFT algorithm and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yang Yang, Yixu Song, Fangwen Zhai, Zhaozhou Fan, Yue Meng, Jiaxin Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Yang Yang
Yixu Song
Fangwen Zhai
Zhaozhou Fan
Yue Meng
Jiaxin Wang
description High-precision localization is getting more and more dependent on computer vision techniques. In this paper a novel high-precision localization algorithm based on improved SIFT (Scale Invariant Feature Transform) key-points is presented. First considering the drawback of original SIFT algorithm and the special application background, the proposed algorithm improves the SIFT key-point description and discards the most time-consuming step of SIFT algorithm. Then the new matching strategy and localization strategy are investigated to ensure the stability and precision of localization. Compared with conventional localization algorithm by SIFT key-point, this algorithm increases computation efficiency for about 20% and makes the precision more stable, which reaches 0.1 pixel.
doi_str_mv 10.1109/CISP.2009.5303161
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5303161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5303161</ieee_id><sourcerecordid>5303161</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-35b3672f9e61b107ee4395a393437b56049b794d9ef273a215e7f917a2b101c33</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhiMy0M09gHiTF2jNyUkazmUpzhULFtb7kXTpFmjX0RahPr0Oh1c_H3x8Fz9jzyBiAEGvWb4rYykExRoFQgJ3bAlKKqUAQd__gyRcsOVVJAEozQNbj2NwQiZakzb6kWUp34bjKSoHX4cx9Gde9LVtw7edrpC2x34I06njbuZ5dxn6L3_gu3xT8Q8_R2UfztP4xBaNbUe_vu2KVZu3KttGxed7nqVFFEhMEWqHiZEN-QQcCOO9QtIWCRUapxOhyBlSB_KNNGglaG8aAmPlrw014oq9_GWD935_GUJnh3l_OwB_AFhXSro</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A High-Precision Localization Algorithm by Improved SIFT Key-Points</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yang Yang ; Yixu Song ; Fangwen Zhai ; Zhaozhou Fan ; Yue Meng ; Jiaxin Wang</creator><creatorcontrib>Yang Yang ; Yixu Song ; Fangwen Zhai ; Zhaozhou Fan ; Yue Meng ; Jiaxin Wang</creatorcontrib><description>High-precision localization is getting more and more dependent on computer vision techniques. In this paper a novel high-precision localization algorithm based on improved SIFT (Scale Invariant Feature Transform) key-points is presented. First considering the drawback of original SIFT algorithm and the special application background, the proposed algorithm improves the SIFT key-point description and discards the most time-consuming step of SIFT algorithm. Then the new matching strategy and localization strategy are investigated to ensure the stability and precision of localization. Compared with conventional localization algorithm by SIFT key-point, this algorithm increases computation efficiency for about 20% and makes the precision more stable, which reaches 0.1 pixel.</description><identifier>ISBN: 1424441293</identifier><identifier>ISBN: 9781424441297</identifier><identifier>EISBN: 1424441315</identifier><identifier>EISBN: 9781424441310</identifier><identifier>DOI: 10.1109/CISP.2009.5303161</identifier><identifier>LCCN: 2009901327</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Bonding ; Computer science ; Computer vision ; Feature extraction ; Fourier transforms ; Information science ; Laboratories ; Least squares methods ; Pixel</subject><ispartof>2009 2nd International Congress on Image and Signal Processing, 2009, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5303161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5303161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang Yang</creatorcontrib><creatorcontrib>Yixu Song</creatorcontrib><creatorcontrib>Fangwen Zhai</creatorcontrib><creatorcontrib>Zhaozhou Fan</creatorcontrib><creatorcontrib>Yue Meng</creatorcontrib><creatorcontrib>Jiaxin Wang</creatorcontrib><title>A High-Precision Localization Algorithm by Improved SIFT Key-Points</title><title>2009 2nd International Congress on Image and Signal Processing</title><addtitle>CISP</addtitle><description>High-precision localization is getting more and more dependent on computer vision techniques. In this paper a novel high-precision localization algorithm based on improved SIFT (Scale Invariant Feature Transform) key-points is presented. First considering the drawback of original SIFT algorithm and the special application background, the proposed algorithm improves the SIFT key-point description and discards the most time-consuming step of SIFT algorithm. Then the new matching strategy and localization strategy are investigated to ensure the stability and precision of localization. Compared with conventional localization algorithm by SIFT key-point, this algorithm increases computation efficiency for about 20% and makes the precision more stable, which reaches 0.1 pixel.</description><subject>Application software</subject><subject>Bonding</subject><subject>Computer science</subject><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Information science</subject><subject>Laboratories</subject><subject>Least squares methods</subject><subject>Pixel</subject><isbn>1424441293</isbn><isbn>9781424441297</isbn><isbn>1424441315</isbn><isbn>9781424441310</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhiMy0M09gHiTF2jNyUkazmUpzhULFtb7kXTpFmjX0RahPr0Oh1c_H3x8Fz9jzyBiAEGvWb4rYykExRoFQgJ3bAlKKqUAQd__gyRcsOVVJAEozQNbj2NwQiZakzb6kWUp34bjKSoHX4cx9Gde9LVtw7edrpC2x34I06njbuZ5dxn6L3_gu3xT8Q8_R2UfztP4xBaNbUe_vu2KVZu3KttGxed7nqVFFEhMEWqHiZEN-QQcCOO9QtIWCRUapxOhyBlSB_KNNGglaG8aAmPlrw014oq9_GWD935_GUJnh3l_OwB_AFhXSro</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Yang Yang</creator><creator>Yixu Song</creator><creator>Fangwen Zhai</creator><creator>Zhaozhou Fan</creator><creator>Yue Meng</creator><creator>Jiaxin Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>A High-Precision Localization Algorithm by Improved SIFT Key-Points</title><author>Yang Yang ; Yixu Song ; Fangwen Zhai ; Zhaozhou Fan ; Yue Meng ; Jiaxin Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-35b3672f9e61b107ee4395a393437b56049b794d9ef273a215e7f917a2b101c33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Application software</topic><topic>Bonding</topic><topic>Computer science</topic><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Information science</topic><topic>Laboratories</topic><topic>Least squares methods</topic><topic>Pixel</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang Yang</creatorcontrib><creatorcontrib>Yixu Song</creatorcontrib><creatorcontrib>Fangwen Zhai</creatorcontrib><creatorcontrib>Zhaozhou Fan</creatorcontrib><creatorcontrib>Yue Meng</creatorcontrib><creatorcontrib>Jiaxin Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang Yang</au><au>Yixu Song</au><au>Fangwen Zhai</au><au>Zhaozhou Fan</au><au>Yue Meng</au><au>Jiaxin Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A High-Precision Localization Algorithm by Improved SIFT Key-Points</atitle><btitle>2009 2nd International Congress on Image and Signal Processing</btitle><stitle>CISP</stitle><date>2009-10</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1424441293</isbn><isbn>9781424441297</isbn><eisbn>1424441315</eisbn><eisbn>9781424441310</eisbn><abstract>High-precision localization is getting more and more dependent on computer vision techniques. In this paper a novel high-precision localization algorithm based on improved SIFT (Scale Invariant Feature Transform) key-points is presented. First considering the drawback of original SIFT algorithm and the special application background, the proposed algorithm improves the SIFT key-point description and discards the most time-consuming step of SIFT algorithm. Then the new matching strategy and localization strategy are investigated to ensure the stability and precision of localization. Compared with conventional localization algorithm by SIFT key-point, this algorithm increases computation efficiency for about 20% and makes the precision more stable, which reaches 0.1 pixel.</abstract><pub>IEEE</pub><doi>10.1109/CISP.2009.5303161</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424441293
ispartof 2009 2nd International Congress on Image and Signal Processing, 2009, p.1-6
issn
language eng
recordid cdi_ieee_primary_5303161
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Bonding
Computer science
Computer vision
Feature extraction
Fourier transforms
Information science
Laboratories
Least squares methods
Pixel
title A High-Precision Localization Algorithm by Improved SIFT Key-Points
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20High-Precision%20Localization%20Algorithm%20by%20Improved%20SIFT%20Key-Points&rft.btitle=2009%202nd%20International%20Congress%20on%20Image%20and%20Signal%20Processing&rft.au=Yang%20Yang&rft.date=2009-10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1424441293&rft.isbn_list=9781424441297&rft_id=info:doi/10.1109/CISP.2009.5303161&rft_dat=%3Cieee_6IE%3E5303161%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441315&rft.eisbn_list=9781424441310&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5303161&rfr_iscdi=true