An Improved Ordered-Subset Simultaneous Algebraic Reconstruction Technique
Ordered-subset simultaneous algebraic reconstruction technique (OS-SART) was studied by Ge Wang and Ming Jiang in 2004. It accelerate the convergence of SART, but it has some disadvantages, such as increasing the number of subsets accelerates iterative convergence, but there is a point beyond which...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Huihua Kong Jinxiao Pan |
description | Ordered-subset simultaneous algebraic reconstruction technique (OS-SART) was studied by Ge Wang and Ming Jiang in 2004. It accelerate the convergence of SART, but it has some disadvantages, such as increasing the number of subsets accelerates iterative convergence, but there is a point beyond which image quality degrades due to a lack of statistical information within subset. In this paper, a new method of subset partition based on statistical test is proposed as an improved OS-SART (IOS-SART). IOS-SART can automatically adjust the number of the subsets for each iteration according to the statistical information content within subset demanded by user. Numerical simulation and application to practical data demonstrate that this algorithm converge faster and can provide high quality reconstructed images after a small number of iterations. |
doi_str_mv | 10.1109/CISP.2009.5302899 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5302899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5302899</ieee_id><sourcerecordid>5302899</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-74a04f14365ebe5219768958f0c9bb2c79db7eb339c1f187421d50e83fb75ad3</originalsourceid><addsrcrecordid>eNo9kMtKw0AYRkekoK19AHGTF0icayb_MgQvkULFdF_m8kcHcqmTRPDtRSyuPg4czuIj5JbRjDEK91XdvGacUsiUoLwAuCBrJrmUkgmmLv-Bg1iR9a8IlAmur8h2moKlPFcKlFbX5KUckro_xfELfbKPHiP6tFnshHPShH7pZjPguExJ2b2jjSa45A3dOExzXNwcxiE5oPsYwueCN2TVmm7C7Xk3pHl8OFTP6W7_VFflLg1A51RLQ2XLpMgVWlScgc4LUEVLHVjLnQZvNVohwLGWFVpy5hXFQrRWK-PFhtz9VQMiHk8x9CZ-H883iB-clk9t</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Improved Ordered-Subset Simultaneous Algebraic Reconstruction Technique</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Huihua Kong ; Jinxiao Pan</creator><creatorcontrib>Huihua Kong ; Jinxiao Pan</creatorcontrib><description>Ordered-subset simultaneous algebraic reconstruction technique (OS-SART) was studied by Ge Wang and Ming Jiang in 2004. It accelerate the convergence of SART, but it has some disadvantages, such as increasing the number of subsets accelerates iterative convergence, but there is a point beyond which image quality degrades due to a lack of statistical information within subset. In this paper, a new method of subset partition based on statistical test is proposed as an improved OS-SART (IOS-SART). IOS-SART can automatically adjust the number of the subsets for each iteration according to the statistical information content within subset demanded by user. Numerical simulation and application to practical data demonstrate that this algorithm converge faster and can provide high quality reconstructed images after a small number of iterations.</description><identifier>ISBN: 1424441293</identifier><identifier>ISBN: 9781424441297</identifier><identifier>EISBN: 1424441315</identifier><identifier>EISBN: 9781424441310</identifier><identifier>DOI: 10.1109/CISP.2009.5302899</identifier><identifier>LCCN: 2009901327</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Computed tomography ; Convergence ; Image quality ; Image reconstruction ; Iterative algorithms ; Iterative methods ; Mathematics ; Partitioning algorithms ; Testing</subject><ispartof>2009 2nd International Congress on Image and Signal Processing, 2009, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5302899$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5302899$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huihua Kong</creatorcontrib><creatorcontrib>Jinxiao Pan</creatorcontrib><title>An Improved Ordered-Subset Simultaneous Algebraic Reconstruction Technique</title><title>2009 2nd International Congress on Image and Signal Processing</title><addtitle>CISP</addtitle><description>Ordered-subset simultaneous algebraic reconstruction technique (OS-SART) was studied by Ge Wang and Ming Jiang in 2004. It accelerate the convergence of SART, but it has some disadvantages, such as increasing the number of subsets accelerates iterative convergence, but there is a point beyond which image quality degrades due to a lack of statistical information within subset. In this paper, a new method of subset partition based on statistical test is proposed as an improved OS-SART (IOS-SART). IOS-SART can automatically adjust the number of the subsets for each iteration according to the statistical information content within subset demanded by user. Numerical simulation and application to practical data demonstrate that this algorithm converge faster and can provide high quality reconstructed images after a small number of iterations.</description><subject>Acceleration</subject><subject>Computed tomography</subject><subject>Convergence</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mathematics</subject><subject>Partitioning algorithms</subject><subject>Testing</subject><isbn>1424441293</isbn><isbn>9781424441297</isbn><isbn>1424441315</isbn><isbn>9781424441310</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtKw0AYRkekoK19AHGTF0icayb_MgQvkULFdF_m8kcHcqmTRPDtRSyuPg4czuIj5JbRjDEK91XdvGacUsiUoLwAuCBrJrmUkgmmLv-Bg1iR9a8IlAmur8h2moKlPFcKlFbX5KUckro_xfELfbKPHiP6tFnshHPShH7pZjPguExJ2b2jjSa45A3dOExzXNwcxiE5oPsYwueCN2TVmm7C7Xk3pHl8OFTP6W7_VFflLg1A51RLQ2XLpMgVWlScgc4LUEVLHVjLnQZvNVohwLGWFVpy5hXFQrRWK-PFhtz9VQMiHk8x9CZ-H883iB-clk9t</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Huihua Kong</creator><creator>Jinxiao Pan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>An Improved Ordered-Subset Simultaneous Algebraic Reconstruction Technique</title><author>Huihua Kong ; Jinxiao Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-74a04f14365ebe5219768958f0c9bb2c79db7eb339c1f187421d50e83fb75ad3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>Computed tomography</topic><topic>Convergence</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mathematics</topic><topic>Partitioning algorithms</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Huihua Kong</creatorcontrib><creatorcontrib>Jinxiao Pan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huihua Kong</au><au>Jinxiao Pan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Improved Ordered-Subset Simultaneous Algebraic Reconstruction Technique</atitle><btitle>2009 2nd International Congress on Image and Signal Processing</btitle><stitle>CISP</stitle><date>2009-10</date><risdate>2009</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1424441293</isbn><isbn>9781424441297</isbn><eisbn>1424441315</eisbn><eisbn>9781424441310</eisbn><abstract>Ordered-subset simultaneous algebraic reconstruction technique (OS-SART) was studied by Ge Wang and Ming Jiang in 2004. It accelerate the convergence of SART, but it has some disadvantages, such as increasing the number of subsets accelerates iterative convergence, but there is a point beyond which image quality degrades due to a lack of statistical information within subset. In this paper, a new method of subset partition based on statistical test is proposed as an improved OS-SART (IOS-SART). IOS-SART can automatically adjust the number of the subsets for each iteration according to the statistical information content within subset demanded by user. Numerical simulation and application to practical data demonstrate that this algorithm converge faster and can provide high quality reconstructed images after a small number of iterations.</abstract><pub>IEEE</pub><doi>10.1109/CISP.2009.5302899</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424441293 |
ispartof | 2009 2nd International Congress on Image and Signal Processing, 2009, p.1-5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5302899 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Computed tomography Convergence Image quality Image reconstruction Iterative algorithms Iterative methods Mathematics Partitioning algorithms Testing |
title | An Improved Ordered-Subset Simultaneous Algebraic Reconstruction Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Improved%20Ordered-Subset%20Simultaneous%20Algebraic%20Reconstruction%20Technique&rft.btitle=2009%202nd%20International%20Congress%20on%20Image%20and%20Signal%20Processing&rft.au=Huihua%20Kong&rft.date=2009-10&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1424441293&rft.isbn_list=9781424441297&rft_id=info:doi/10.1109/CISP.2009.5302899&rft_dat=%3Cieee_6IE%3E5302899%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441315&rft.eisbn_list=9781424441310&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5302899&rfr_iscdi=true |