Detecting Significant Events in Personal Image Collections
The organization and retrieval of images and videos is a problem for the typical consumer. A typical image collection includes many pictures of common activities that are not considered to be important by the user. These images inflate the number of assets in a collection to the point where it is di...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | |
container_start_page | 116 |
container_title | |
container_volume | |
creator | Das, M. Loui, A.C. |
description | The organization and retrieval of images and videos is a problem for the typical consumer. A typical image collection includes many pictures of common activities that are not considered to be important by the user. These images inflate the number of assets in a collection to the point where it is difficult to find significant events when browsing. It is useful for the user to be able to browse an overview of important events in their collection. This paper proposes a new approach for identifying a small sub-set of events in a large collection that have a high probability of being significant. Using techniques from time-series modeling, a representation of a user's picture-taking behavior is constructed. The detection of significant events is based on the deviation from this learned representation. The results match a user's judgment of significance and enables efficient browsing and searching of the collection by focusing on a small set of images. |
doi_str_mv | 10.1109/ICSC.2009.36 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5298598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5298598</ieee_id><sourcerecordid>5298598</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-77c4cdcbb3eaf5393ccaf13cb3d93d56793b96a07654dbd1329b32ea8d6b3b93</originalsourceid><addsrcrecordid>eNotjktLxDAYRSMiqGN37tzkD7Qm-fJ0J3XUwoDCzH7IqyXSSaUpgv_eit7NXZzL4SJ0S0lDKTH3XbtvG0aIaUCeocooTZQ0AjQh8hxdU84450YyeYmqUj7IGi6YFvIKPTzFJfol5QHv05BTn7zNC95-xbwUnDJ-j3OZsh1xd7JDxO00jr_7KZcbdNHbscTqvzfo8Lw9tK_17u2lax93daJKLLVSnvvgnYNoewEGvLc9Be8gGAhCKgPOSLs-Fjy4QIEZByxaHaRbCWzQ3Z82xRiPn3M62fn7KJjRwmj4AY95R5E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detecting Significant Events in Personal Image Collections</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Das, M. ; Loui, A.C.</creator><creatorcontrib>Das, M. ; Loui, A.C.</creatorcontrib><description>The organization and retrieval of images and videos is a problem for the typical consumer. A typical image collection includes many pictures of common activities that are not considered to be important by the user. These images inflate the number of assets in a collection to the point where it is difficult to find significant events when browsing. It is useful for the user to be able to browse an overview of important events in their collection. This paper proposes a new approach for identifying a small sub-set of events in a large collection that have a high probability of being significant. Using techniques from time-series modeling, a representation of a user's picture-taking behavior is constructed. The detection of significant events is based on the deviation from this learned representation. The results match a user's judgment of significance and enables efficient browsing and searching of the collection by focusing on a small set of images.</description><identifier>ISBN: 1424449626</identifier><identifier>ISBN: 9781424449620</identifier><identifier>EISBN: 9780769538006</identifier><identifier>EISBN: 0769538002</identifier><identifier>DOI: 10.1109/ICSC.2009.36</identifier><language>eng</language><publisher>IEEE</publisher><subject>ARIMA ; Calendars ; Digital cameras ; Digital images ; Event detection ; image collections ; Image databases ; Image retrieval ; Laboratories ; Organizing ; time-series modeling ; USA Councils ; Videos</subject><ispartof>2009 IEEE International Conference on Semantic Computing, 2009, p.116-123</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5298598$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5298598$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Das, M.</creatorcontrib><creatorcontrib>Loui, A.C.</creatorcontrib><title>Detecting Significant Events in Personal Image Collections</title><title>2009 IEEE International Conference on Semantic Computing</title><addtitle>ICOSC</addtitle><description>The organization and retrieval of images and videos is a problem for the typical consumer. A typical image collection includes many pictures of common activities that are not considered to be important by the user. These images inflate the number of assets in a collection to the point where it is difficult to find significant events when browsing. It is useful for the user to be able to browse an overview of important events in their collection. This paper proposes a new approach for identifying a small sub-set of events in a large collection that have a high probability of being significant. Using techniques from time-series modeling, a representation of a user's picture-taking behavior is constructed. The detection of significant events is based on the deviation from this learned representation. The results match a user's judgment of significance and enables efficient browsing and searching of the collection by focusing on a small set of images.</description><subject>ARIMA</subject><subject>Calendars</subject><subject>Digital cameras</subject><subject>Digital images</subject><subject>Event detection</subject><subject>image collections</subject><subject>Image databases</subject><subject>Image retrieval</subject><subject>Laboratories</subject><subject>Organizing</subject><subject>time-series modeling</subject><subject>USA Councils</subject><subject>Videos</subject><isbn>1424449626</isbn><isbn>9781424449620</isbn><isbn>9780769538006</isbn><isbn>0769538002</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjktLxDAYRSMiqGN37tzkD7Qm-fJ0J3XUwoDCzH7IqyXSSaUpgv_eit7NXZzL4SJ0S0lDKTH3XbtvG0aIaUCeocooTZQ0AjQh8hxdU84450YyeYmqUj7IGi6YFvIKPTzFJfol5QHv05BTn7zNC95-xbwUnDJ-j3OZsh1xd7JDxO00jr_7KZcbdNHbscTqvzfo8Lw9tK_17u2lax93daJKLLVSnvvgnYNoewEGvLc9Be8gGAhCKgPOSLs-Fjy4QIEZByxaHaRbCWzQ3Z82xRiPn3M62fn7KJjRwmj4AY95R5E</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Das, M.</creator><creator>Loui, A.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>Detecting Significant Events in Personal Image Collections</title><author>Das, M. ; Loui, A.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-77c4cdcbb3eaf5393ccaf13cb3d93d56793b96a07654dbd1329b32ea8d6b3b93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ARIMA</topic><topic>Calendars</topic><topic>Digital cameras</topic><topic>Digital images</topic><topic>Event detection</topic><topic>image collections</topic><topic>Image databases</topic><topic>Image retrieval</topic><topic>Laboratories</topic><topic>Organizing</topic><topic>time-series modeling</topic><topic>USA Councils</topic><topic>Videos</topic><toplevel>online_resources</toplevel><creatorcontrib>Das, M.</creatorcontrib><creatorcontrib>Loui, A.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Das, M.</au><au>Loui, A.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detecting Significant Events in Personal Image Collections</atitle><btitle>2009 IEEE International Conference on Semantic Computing</btitle><stitle>ICOSC</stitle><date>2009-09</date><risdate>2009</risdate><spage>116</spage><epage>123</epage><pages>116-123</pages><isbn>1424449626</isbn><isbn>9781424449620</isbn><eisbn>9780769538006</eisbn><eisbn>0769538002</eisbn><abstract>The organization and retrieval of images and videos is a problem for the typical consumer. A typical image collection includes many pictures of common activities that are not considered to be important by the user. These images inflate the number of assets in a collection to the point where it is difficult to find significant events when browsing. It is useful for the user to be able to browse an overview of important events in their collection. This paper proposes a new approach for identifying a small sub-set of events in a large collection that have a high probability of being significant. Using techniques from time-series modeling, a representation of a user's picture-taking behavior is constructed. The detection of significant events is based on the deviation from this learned representation. The results match a user's judgment of significance and enables efficient browsing and searching of the collection by focusing on a small set of images.</abstract><pub>IEEE</pub><doi>10.1109/ICSC.2009.36</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424449626 |
ispartof | 2009 IEEE International Conference on Semantic Computing, 2009, p.116-123 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5298598 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | ARIMA Calendars Digital cameras Digital images Event detection image collections Image databases Image retrieval Laboratories Organizing time-series modeling USA Councils Videos |
title | Detecting Significant Events in Personal Image Collections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detecting%20Significant%20Events%20in%20Personal%20Image%20Collections&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Semantic%20Computing&rft.au=Das,%20M.&rft.date=2009-09&rft.spage=116&rft.epage=123&rft.pages=116-123&rft.isbn=1424449626&rft.isbn_list=9781424449620&rft_id=info:doi/10.1109/ICSC.2009.36&rft_dat=%3Cieee_6IE%3E5298598%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769538006&rft.eisbn_list=0769538002&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5298598&rfr_iscdi=true |