Age Detection in Chat

This paper presents the results of using statistical analysis and automatic text categorization to identify an author's age group based on the author's online chat posts. A naive Bayesian classifier and support vector machine (SVM) model were used. The SVM model experiments generated an f-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tam, J., Martell, C.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue
container_start_page 33
container_title
container_volume
creator Tam, J.
Martell, C.H.
description This paper presents the results of using statistical analysis and automatic text categorization to identify an author's age group based on the author's online chat posts. A naive Bayesian classifier and support vector machine (SVM) model were used. The SVM model experiments generated an f-score measurement of 0.996 on test data distinguishing teens from adults. We also introduce an alternative method for generating ldquostop wordsrdquo that chooses n-grams based on their relative distribution across the classes.
doi_str_mv 10.1109/ICSC.2009.37
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5298540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5298540</ieee_id><sourcerecordid>5298540</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b86a771ee180c3d0f254b9cfec29ca4799595d4a21fc21a816702990e33f834b3</originalsourceid><addsrcrecordid>eNotzLtOw0AQQNFFCAkI7qCi8Q_YzMzOPqaMzCtSJAqgjtabWVgEAcVu-HuQ4Danu8acI_SIIFer4XHoCUB6Gw5MIyFC8OJsBPCH5hSZmFk8-WPTTNMb_MaOovMn5mL5ou21zprn-rlr664dXtN8Zo5Kep-0-Xdhnm9vnob7bv1wtxqW665icHM3Rp9CQFWMkO0WCjkeJRfNJDlxEHHitpwISyZMEX0AEgG1tkTLo12Yy79vVdXN175-pP33xpFEx2B_AO2hOCk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Age Detection in Chat</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tam, J. ; Martell, C.H.</creator><creatorcontrib>Tam, J. ; Martell, C.H.</creatorcontrib><description>This paper presents the results of using statistical analysis and automatic text categorization to identify an author's age group based on the author's online chat posts. A naive Bayesian classifier and support vector machine (SVM) model were used. The SVM model experiments generated an f-score measurement of 0.996 on test data distinguishing teens from adults. We also introduce an alternative method for generating ldquostop wordsrdquo that chooses n-grams based on their relative distribution across the classes.</description><identifier>ISBN: 1424449626</identifier><identifier>ISBN: 9781424449620</identifier><identifier>EISBN: 9780769538006</identifier><identifier>EISBN: 0769538002</identifier><identifier>DOI: 10.1109/ICSC.2009.37</identifier><language>eng</language><publisher>IEEE</publisher><subject>age classification ; Bayesian methods ; Computer science ; Internet ; Law enforcement ; Naïve Bayesian Classifier ; Niobium compounds ; online chat ; Statistical analysis ; stop words ; Support Vector Machine ; Support vector machine classification ; Support vector machines ; Testing ; Text categorization</subject><ispartof>2009 IEEE International Conference on Semantic Computing, 2009, p.33-39</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5298540$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5298540$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tam, J.</creatorcontrib><creatorcontrib>Martell, C.H.</creatorcontrib><title>Age Detection in Chat</title><title>2009 IEEE International Conference on Semantic Computing</title><addtitle>ICOSC</addtitle><description>This paper presents the results of using statistical analysis and automatic text categorization to identify an author's age group based on the author's online chat posts. A naive Bayesian classifier and support vector machine (SVM) model were used. The SVM model experiments generated an f-score measurement of 0.996 on test data distinguishing teens from adults. We also introduce an alternative method for generating ldquostop wordsrdquo that chooses n-grams based on their relative distribution across the classes.</description><subject>age classification</subject><subject>Bayesian methods</subject><subject>Computer science</subject><subject>Internet</subject><subject>Law enforcement</subject><subject>Naïve Bayesian Classifier</subject><subject>Niobium compounds</subject><subject>online chat</subject><subject>Statistical analysis</subject><subject>stop words</subject><subject>Support Vector Machine</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Testing</subject><subject>Text categorization</subject><isbn>1424449626</isbn><isbn>9781424449620</isbn><isbn>9780769538006</isbn><isbn>0769538002</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzLtOw0AQQNFFCAkI7qCi8Q_YzMzOPqaMzCtSJAqgjtabWVgEAcVu-HuQ4Danu8acI_SIIFer4XHoCUB6Gw5MIyFC8OJsBPCH5hSZmFk8-WPTTNMb_MaOovMn5mL5ou21zprn-rlr664dXtN8Zo5Kep-0-Xdhnm9vnob7bv1wtxqW665icHM3Rp9CQFWMkO0WCjkeJRfNJDlxEHHitpwISyZMEX0AEgG1tkTLo12Yy79vVdXN175-pP33xpFEx2B_AO2hOCk</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Tam, J.</creator><creator>Martell, C.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>Age Detection in Chat</title><author>Tam, J. ; Martell, C.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b86a771ee180c3d0f254b9cfec29ca4799595d4a21fc21a816702990e33f834b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>age classification</topic><topic>Bayesian methods</topic><topic>Computer science</topic><topic>Internet</topic><topic>Law enforcement</topic><topic>Naïve Bayesian Classifier</topic><topic>Niobium compounds</topic><topic>online chat</topic><topic>Statistical analysis</topic><topic>stop words</topic><topic>Support Vector Machine</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Testing</topic><topic>Text categorization</topic><toplevel>online_resources</toplevel><creatorcontrib>Tam, J.</creatorcontrib><creatorcontrib>Martell, C.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tam, J.</au><au>Martell, C.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Age Detection in Chat</atitle><btitle>2009 IEEE International Conference on Semantic Computing</btitle><stitle>ICOSC</stitle><date>2009-09</date><risdate>2009</risdate><spage>33</spage><epage>39</epage><pages>33-39</pages><isbn>1424449626</isbn><isbn>9781424449620</isbn><eisbn>9780769538006</eisbn><eisbn>0769538002</eisbn><abstract>This paper presents the results of using statistical analysis and automatic text categorization to identify an author's age group based on the author's online chat posts. A naive Bayesian classifier and support vector machine (SVM) model were used. The SVM model experiments generated an f-score measurement of 0.996 on test data distinguishing teens from adults. We also introduce an alternative method for generating ldquostop wordsrdquo that chooses n-grams based on their relative distribution across the classes.</abstract><pub>IEEE</pub><doi>10.1109/ICSC.2009.37</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424449626
ispartof 2009 IEEE International Conference on Semantic Computing, 2009, p.33-39
issn
language eng
recordid cdi_ieee_primary_5298540
source IEEE Electronic Library (IEL) Conference Proceedings
subjects age classification
Bayesian methods
Computer science
Internet
Law enforcement
Naïve Bayesian Classifier
Niobium compounds
online chat
Statistical analysis
stop words
Support Vector Machine
Support vector machine classification
Support vector machines
Testing
Text categorization
title Age Detection in Chat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Age%20Detection%20in%20Chat&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Semantic%20Computing&rft.au=Tam,%20J.&rft.date=2009-09&rft.spage=33&rft.epage=39&rft.pages=33-39&rft.isbn=1424449626&rft.isbn_list=9781424449620&rft_id=info:doi/10.1109/ICSC.2009.37&rft_dat=%3Cieee_6IE%3E5298540%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769538006&rft.eisbn_list=0769538002&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5298540&rfr_iscdi=true