A Triaxial Accelerometer Calibration Method Using a Mathematical Model
This paper presents a new triaxial accelerometer calibration method using a mathematical model of six calibration parameters: three gain factors and three biases. The fundamental principle of the proposed calibration method is that the sum of the triaxial accelerometer outputs is equal to the gravit...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2010-08, Vol.59 (8), p.2144-2153 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2153 |
---|---|
container_issue | 8 |
container_start_page | 2144 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 59 |
creator | Won, S P Golnaraghi, F |
description | This paper presents a new triaxial accelerometer calibration method using a mathematical model of six calibration parameters: three gain factors and three biases. The fundamental principle of the proposed calibration method is that the sum of the triaxial accelerometer outputs is equal to the gravity vector when the accelerometer is stationary. The proposed method requires the triaxial accelerometer to be placed in six different tilt angles to estimate the six calibration parameters. Since the mathematical model of the calibration parameters is nonlinear, an iterative method is used. The results are verified via simulations by comparing the estimated gain factors and biases with the true gain factors and biases. The simulation results confirm that the proposed method is applicable in extreme cases where the gain factor is 1000 V/(m/s 2 ) and the bias is ±100 V, as well as the cases where the gain factor is 0.001 V/(m/s 2 ) and the bias is 0 V. The proposed calibration method is also experimentally tested with two different triaxial accelerometers, and the results are validated using a mechanical inclinometer. The experimental results show that the proposed method can accurately estimate gain factors and biases even when the initial guesses are not close to the true values. In addition, the proposed method has a low computational cost because the calculation is simple, and the iterative method usually converges within three iteration steps. The error sources of the experiments are discussed in this paper. |
doi_str_mv | 10.1109/TIM.2009.2031849 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5291740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5291740</ieee_id><sourcerecordid>2717245991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-147f1878ee82f6799cd6a69cb45cb07d4654444d734c9e5394cca2d73cbe16933</originalsourceid><addsrcrecordid>eNpdkMtLw0AQxhdRsD7ugpeAB0-p-8o-jqVYLTR4ac_LZjOxKUm27qag_71bWjw4hxmG-X3Dx4fQA8FTQrB-WS_LKcVYp8aI4voCTUhRyFwLQS_RBGOics0LcY1uYtxhjKXgcoIWs2wdWvvd2i6bOQcdBN_DCCGb266tgh1bP2QljFtfZ5vYDp-ZzUo7bqFPJ5dUpa-hu0NXje0i3J_nLdosXtfz93z18bacz1a5Y5SNOeGyIUoqAEUbIbV2tbBCu4oXrsKy5qLgqWrJuNNQMM2dszStrgIiNGO36Pn0dx_81wHiaPo2JtedHcAfolFEKUap5ol8-kfu_CEMyZwhmErKCC5kovCJcsHHGKAx-9D2NvwkyBxzNSlXc8zVnHNNkseTpAWAP7ygmkiO2S_0RnHl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027231057</pqid></control><display><type>article</type><title>A Triaxial Accelerometer Calibration Method Using a Mathematical Model</title><source>IEEE Electronic Library (IEL)</source><creator>Won, S P ; Golnaraghi, F</creator><creatorcontrib>Won, S P ; Golnaraghi, F</creatorcontrib><description>This paper presents a new triaxial accelerometer calibration method using a mathematical model of six calibration parameters: three gain factors and three biases. The fundamental principle of the proposed calibration method is that the sum of the triaxial accelerometer outputs is equal to the gravity vector when the accelerometer is stationary. The proposed method requires the triaxial accelerometer to be placed in six different tilt angles to estimate the six calibration parameters. Since the mathematical model of the calibration parameters is nonlinear, an iterative method is used. The results are verified via simulations by comparing the estimated gain factors and biases with the true gain factors and biases. The simulation results confirm that the proposed method is applicable in extreme cases where the gain factor is 1000 V/(m/s 2 ) and the bias is ±100 V, as well as the cases where the gain factor is 0.001 V/(m/s 2 ) and the bias is 0 V. The proposed calibration method is also experimentally tested with two different triaxial accelerometers, and the results are validated using a mechanical inclinometer. The experimental results show that the proposed method can accurately estimate gain factors and biases even when the initial guesses are not close to the true values. In addition, the proposed method has a low computational cost because the calculation is simple, and the iterative method usually converges within three iteration steps. The error sources of the experiments are discussed in this paper.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2009.2031849</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration measurement ; Accelerometers ; Bias ; Calibration ; Computational efficiency ; Computer simulation ; Estimates ; Gain ; Goniometers ; Gravity measurement ; iterative method ; Iterative methods ; Mathematical model ; Mathematical models ; Parameter estimation ; Studies ; Temperature sensors ; Testing</subject><ispartof>IEEE transactions on instrumentation and measurement, 2010-08, Vol.59 (8), p.2144-2153</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-147f1878ee82f6799cd6a69cb45cb07d4654444d734c9e5394cca2d73cbe16933</citedby><cites>FETCH-LOGICAL-c323t-147f1878ee82f6799cd6a69cb45cb07d4654444d734c9e5394cca2d73cbe16933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5291740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5291740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Won, S P</creatorcontrib><creatorcontrib>Golnaraghi, F</creatorcontrib><title>A Triaxial Accelerometer Calibration Method Using a Mathematical Model</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This paper presents a new triaxial accelerometer calibration method using a mathematical model of six calibration parameters: three gain factors and three biases. The fundamental principle of the proposed calibration method is that the sum of the triaxial accelerometer outputs is equal to the gravity vector when the accelerometer is stationary. The proposed method requires the triaxial accelerometer to be placed in six different tilt angles to estimate the six calibration parameters. Since the mathematical model of the calibration parameters is nonlinear, an iterative method is used. The results are verified via simulations by comparing the estimated gain factors and biases with the true gain factors and biases. The simulation results confirm that the proposed method is applicable in extreme cases where the gain factor is 1000 V/(m/s 2 ) and the bias is ±100 V, as well as the cases where the gain factor is 0.001 V/(m/s 2 ) and the bias is 0 V. The proposed calibration method is also experimentally tested with two different triaxial accelerometers, and the results are validated using a mechanical inclinometer. The experimental results show that the proposed method can accurately estimate gain factors and biases even when the initial guesses are not close to the true values. In addition, the proposed method has a low computational cost because the calculation is simple, and the iterative method usually converges within three iteration steps. The error sources of the experiments are discussed in this paper.</description><subject>Acceleration measurement</subject><subject>Accelerometers</subject><subject>Bias</subject><subject>Calibration</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Estimates</subject><subject>Gain</subject><subject>Goniometers</subject><subject>Gravity measurement</subject><subject>iterative method</subject><subject>Iterative methods</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Studies</subject><subject>Temperature sensors</subject><subject>Testing</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLw0AQxhdRsD7ugpeAB0-p-8o-jqVYLTR4ac_LZjOxKUm27qag_71bWjw4hxmG-X3Dx4fQA8FTQrB-WS_LKcVYp8aI4voCTUhRyFwLQS_RBGOics0LcY1uYtxhjKXgcoIWs2wdWvvd2i6bOQcdBN_DCCGb266tgh1bP2QljFtfZ5vYDp-ZzUo7bqFPJ5dUpa-hu0NXje0i3J_nLdosXtfz93z18bacz1a5Y5SNOeGyIUoqAEUbIbV2tbBCu4oXrsKy5qLgqWrJuNNQMM2dszStrgIiNGO36Pn0dx_81wHiaPo2JtedHcAfolFEKUap5ol8-kfu_CEMyZwhmErKCC5kovCJcsHHGKAx-9D2NvwkyBxzNSlXc8zVnHNNkseTpAWAP7ygmkiO2S_0RnHl</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Won, S P</creator><creator>Golnaraghi, F</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201008</creationdate><title>A Triaxial Accelerometer Calibration Method Using a Mathematical Model</title><author>Won, S P ; Golnaraghi, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-147f1878ee82f6799cd6a69cb45cb07d4654444d734c9e5394cca2d73cbe16933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acceleration measurement</topic><topic>Accelerometers</topic><topic>Bias</topic><topic>Calibration</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Estimates</topic><topic>Gain</topic><topic>Goniometers</topic><topic>Gravity measurement</topic><topic>iterative method</topic><topic>Iterative methods</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Studies</topic><topic>Temperature sensors</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Won, S P</creatorcontrib><creatorcontrib>Golnaraghi, F</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Won, S P</au><au>Golnaraghi, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Triaxial Accelerometer Calibration Method Using a Mathematical Model</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2010-08</date><risdate>2010</risdate><volume>59</volume><issue>8</issue><spage>2144</spage><epage>2153</epage><pages>2144-2153</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This paper presents a new triaxial accelerometer calibration method using a mathematical model of six calibration parameters: three gain factors and three biases. The fundamental principle of the proposed calibration method is that the sum of the triaxial accelerometer outputs is equal to the gravity vector when the accelerometer is stationary. The proposed method requires the triaxial accelerometer to be placed in six different tilt angles to estimate the six calibration parameters. Since the mathematical model of the calibration parameters is nonlinear, an iterative method is used. The results are verified via simulations by comparing the estimated gain factors and biases with the true gain factors and biases. The simulation results confirm that the proposed method is applicable in extreme cases where the gain factor is 1000 V/(m/s 2 ) and the bias is ±100 V, as well as the cases where the gain factor is 0.001 V/(m/s 2 ) and the bias is 0 V. The proposed calibration method is also experimentally tested with two different triaxial accelerometers, and the results are validated using a mechanical inclinometer. The experimental results show that the proposed method can accurately estimate gain factors and biases even when the initial guesses are not close to the true values. In addition, the proposed method has a low computational cost because the calculation is simple, and the iterative method usually converges within three iteration steps. The error sources of the experiments are discussed in this paper.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2009.2031849</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2010-08, Vol.59 (8), p.2144-2153 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_5291740 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration measurement Accelerometers Bias Calibration Computational efficiency Computer simulation Estimates Gain Goniometers Gravity measurement iterative method Iterative methods Mathematical model Mathematical models Parameter estimation Studies Temperature sensors Testing |
title | A Triaxial Accelerometer Calibration Method Using a Mathematical Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Triaxial%20Accelerometer%20Calibration%20Method%20Using%20a%20Mathematical%20Model&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Won,%20S%20P&rft.date=2010-08&rft.volume=59&rft.issue=8&rft.spage=2144&rft.epage=2153&rft.pages=2144-2153&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2009.2031849&rft_dat=%3Cproquest_RIE%3E2717245991%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027231057&rft_id=info:pmid/&rft_ieee_id=5291740&rfr_iscdi=true |