Estimation of engine torque based on improved BP neural network

Aiming at the mass-energy power assembly control system in HEVs, a method is designed to estimate the engine torque, which is based on improved BP neural network. Based on the experiment results in engine dynamometer, and strong nonlinear characteristic of the engine is taken into account, tradition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xudong Wang, Xiaogang Wu, Jimin Jing, Tengwei Yu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1683
container_issue
container_start_page 1679
container_title
container_volume
creator Xudong Wang
Xiaogang Wu
Jimin Jing
Tengwei Yu
description Aiming at the mass-energy power assembly control system in HEVs, a method is designed to estimate the engine torque, which is based on improved BP neural network. Based on the experiment results in engine dynamometer, and strong nonlinear characteristic of the engine is taken into account, traditional BP neural network error function is improved, and it is trained by optimal stopping, as a result over-fitting will be avoided. The engine torque output model is established with MATLAB, and it has high estimated accuracy and nice generalization ability. After all, validity of the algorithm mentioned above is verified by experiments.
doi_str_mv 10.1109/VPPC.2009.5289684
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5289684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5289684</ieee_id><sourcerecordid>5289684</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2d2ac4b674da692bcbb6446aca7f7c618b5c5055d87efb3659b0296ce6eeea463</originalsourceid><addsrcrecordid>eNpVUMtOwzAQNIJKlJIPQFz8Awl-ru0Tgqg8pErkUHGtbMdBhjYpTgri77FEL-xldnY1o9EgdEVJRSkxN69NU1eMEFNJpg1ocYIKozQVTAgGhJLTf5zwMzSnhutSKwkzdJGl2hChQZyjYhzfSR6RrSSfo9vlOMWdneLQ46HDoX-LfcDTkD4PATs7hhbnT9zt0_CV9_sG9-GQ7DbD9D2kj0s06-x2DMURF2j9sFzXT-Xq5fG5vluV0ZCpZC2zXjhQorVgmPPOgRBgvVWd8kC1k14SKVutQuc4SOMIM-ADhBCsAL5A13-2MR82-5Qjp5_NsQ7-C5PsTyA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Estimation of engine torque based on improved BP neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xudong Wang ; Xiaogang Wu ; Jimin Jing ; Tengwei Yu</creator><creatorcontrib>Xudong Wang ; Xiaogang Wu ; Jimin Jing ; Tengwei Yu</creatorcontrib><description>Aiming at the mass-energy power assembly control system in HEVs, a method is designed to estimate the engine torque, which is based on improved BP neural network. Based on the experiment results in engine dynamometer, and strong nonlinear characteristic of the engine is taken into account, traditional BP neural network error function is improved, and it is trained by optimal stopping, as a result over-fitting will be avoided. The engine torque output model is established with MATLAB, and it has high estimated accuracy and nice generalization ability. After all, validity of the algorithm mentioned above is verified by experiments.</description><identifier>ISSN: 1938-8756</identifier><identifier>ISBN: 9781424426003</identifier><identifier>ISBN: 1424426006</identifier><identifier>EISBN: 9781424426010</identifier><identifier>EISBN: 1424426014</identifier><identifier>DOI: 10.1109/VPPC.2009.5289684</identifier><identifier>LCCN: 2008904864</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; Design engineering ; Electronic mail ; Engines ; Equations ; estimation ; hybrid electric vehicle ; Mathematical model ; neural network ; Neural networks ; Neurons ; optimal stopping rule ; Power engineering and energy ; torque ; Torque control</subject><ispartof>2009 IEEE Vehicle Power and Propulsion Conference, 2009, p.1679-1683</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5289684$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5289684$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xudong Wang</creatorcontrib><creatorcontrib>Xiaogang Wu</creatorcontrib><creatorcontrib>Jimin Jing</creatorcontrib><creatorcontrib>Tengwei Yu</creatorcontrib><title>Estimation of engine torque based on improved BP neural network</title><title>2009 IEEE Vehicle Power and Propulsion Conference</title><addtitle>VPPC</addtitle><description>Aiming at the mass-energy power assembly control system in HEVs, a method is designed to estimate the engine torque, which is based on improved BP neural network. Based on the experiment results in engine dynamometer, and strong nonlinear characteristic of the engine is taken into account, traditional BP neural network error function is improved, and it is trained by optimal stopping, as a result over-fitting will be avoided. The engine torque output model is established with MATLAB, and it has high estimated accuracy and nice generalization ability. After all, validity of the algorithm mentioned above is verified by experiments.</description><subject>Control systems</subject><subject>Design engineering</subject><subject>Electronic mail</subject><subject>Engines</subject><subject>Equations</subject><subject>estimation</subject><subject>hybrid electric vehicle</subject><subject>Mathematical model</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>optimal stopping rule</subject><subject>Power engineering and energy</subject><subject>torque</subject><subject>Torque control</subject><issn>1938-8756</issn><isbn>9781424426003</isbn><isbn>1424426006</isbn><isbn>9781424426010</isbn><isbn>1424426014</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMtOwzAQNIJKlJIPQFz8Awl-ru0Tgqg8pErkUHGtbMdBhjYpTgri77FEL-xldnY1o9EgdEVJRSkxN69NU1eMEFNJpg1ocYIKozQVTAgGhJLTf5zwMzSnhutSKwkzdJGl2hChQZyjYhzfSR6RrSSfo9vlOMWdneLQ46HDoX-LfcDTkD4PATs7hhbnT9zt0_CV9_sG9-GQ7DbD9D2kj0s06-x2DMURF2j9sFzXT-Xq5fG5vluV0ZCpZC2zXjhQorVgmPPOgRBgvVWd8kC1k14SKVutQuc4SOMIM-ADhBCsAL5A13-2MR82-5Qjp5_NsQ7-C5PsTyA</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Xudong Wang</creator><creator>Xiaogang Wu</creator><creator>Jimin Jing</creator><creator>Tengwei Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>Estimation of engine torque based on improved BP neural network</title><author>Xudong Wang ; Xiaogang Wu ; Jimin Jing ; Tengwei Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2d2ac4b674da692bcbb6446aca7f7c618b5c5055d87efb3659b0296ce6eeea463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Control systems</topic><topic>Design engineering</topic><topic>Electronic mail</topic><topic>Engines</topic><topic>Equations</topic><topic>estimation</topic><topic>hybrid electric vehicle</topic><topic>Mathematical model</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>optimal stopping rule</topic><topic>Power engineering and energy</topic><topic>torque</topic><topic>Torque control</topic><toplevel>online_resources</toplevel><creatorcontrib>Xudong Wang</creatorcontrib><creatorcontrib>Xiaogang Wu</creatorcontrib><creatorcontrib>Jimin Jing</creatorcontrib><creatorcontrib>Tengwei Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xudong Wang</au><au>Xiaogang Wu</au><au>Jimin Jing</au><au>Tengwei Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimation of engine torque based on improved BP neural network</atitle><btitle>2009 IEEE Vehicle Power and Propulsion Conference</btitle><stitle>VPPC</stitle><date>2009-09</date><risdate>2009</risdate><spage>1679</spage><epage>1683</epage><pages>1679-1683</pages><issn>1938-8756</issn><isbn>9781424426003</isbn><isbn>1424426006</isbn><eisbn>9781424426010</eisbn><eisbn>1424426014</eisbn><abstract>Aiming at the mass-energy power assembly control system in HEVs, a method is designed to estimate the engine torque, which is based on improved BP neural network. Based on the experiment results in engine dynamometer, and strong nonlinear characteristic of the engine is taken into account, traditional BP neural network error function is improved, and it is trained by optimal stopping, as a result over-fitting will be avoided. The engine torque output model is established with MATLAB, and it has high estimated accuracy and nice generalization ability. After all, validity of the algorithm mentioned above is verified by experiments.</abstract><pub>IEEE</pub><doi>10.1109/VPPC.2009.5289684</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1938-8756
ispartof 2009 IEEE Vehicle Power and Propulsion Conference, 2009, p.1679-1683
issn 1938-8756
language eng
recordid cdi_ieee_primary_5289684
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Control systems
Design engineering
Electronic mail
Engines
Equations
estimation
hybrid electric vehicle
Mathematical model
neural network
Neural networks
Neurons
optimal stopping rule
Power engineering and energy
torque
Torque control
title Estimation of engine torque based on improved BP neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimation%20of%20engine%20torque%20based%20on%20improved%20BP%20neural%20network&rft.btitle=2009%20IEEE%20Vehicle%20Power%20and%20Propulsion%20Conference&rft.au=Xudong%20Wang&rft.date=2009-09&rft.spage=1679&rft.epage=1683&rft.pages=1679-1683&rft.issn=1938-8756&rft.isbn=9781424426003&rft.isbn_list=1424426006&rft_id=info:doi/10.1109/VPPC.2009.5289684&rft_dat=%3Cieee_6IE%3E5289684%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424426010&rft.eisbn_list=1424426014&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5289684&rfr_iscdi=true