High-speed FPGA-based implementations of a Genetic Algorithm
One very promising approach for solving complex optimizing and search problems is the Genetic Algorithm (GA) one. Based on this scheme a population of abstract representations of candidate solutions to an optimization problem gradually evolves toward better solutions. The aim is the optimization of...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 9 |
container_title | |
container_volume | |
creator | Vavouras, M. Papadimitriou, K. Papaefstathiou, I. |
description | One very promising approach for solving complex optimizing and search problems is the Genetic Algorithm (GA) one. Based on this scheme a population of abstract representations of candidate solutions to an optimization problem gradually evolves toward better solutions. The aim is the optimization of a given function, the so called fitness function, which is evaluated upon the initial population as well as upon the solutions after successive generations. In this paper, we present the design of a GA and its implementation on state-of-the-art FPGAs. Our approach optimizes significantly more fitness functions than any other proposed solution. Several experiments on a platform with a Virtex-II Pro FPGA have been conducted. Implementations on a number of different high-end FPGAs outperforms other reconfigurable systems with a speedup ranging from 1.2x to 96.5x. |
doi_str_mv | 10.1109/ICSAMOS.2009.5289236 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5289236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5289236</ieee_id><sourcerecordid>5289236</sourcerecordid><originalsourceid>FETCH-LOGICAL-i221t-9b9a7b22db918737ae9c792356b12e8d0d7fe0531d62d97eacc46aa89526acc3</originalsourceid><addsrcrecordid>eNotj8tqwzAURAUl0CbNFyQL_4Bd6eplQTfGNE4gJYVkH2TrOlHxC8ub_n1dmtnMgYFhhpAtowlj1Lwd8nP2eTonQKlJJKQGuHoiSyZACCEp6AVZ_mWGcmnUM1mH8E1nCQlcqxfyvve3exwGRBftvoosLm2Y0bdDgy12k51834WoryMbFdjh5Ksoa2796Kd7-0oWtW0Crh--IpfdxyXfx8dTccizY-wB2BSb0lhdArjSsFRzbdFUeh4qVckAU0edrpFKzpwCZzTaqhLK2tRIUDPzFdn813pEvA6jb-34c32c5b_TBEhO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>High-speed FPGA-based implementations of a Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vavouras, M. ; Papadimitriou, K. ; Papaefstathiou, I.</creator><creatorcontrib>Vavouras, M. ; Papadimitriou, K. ; Papaefstathiou, I.</creatorcontrib><description>One very promising approach for solving complex optimizing and search problems is the Genetic Algorithm (GA) one. Based on this scheme a population of abstract representations of candidate solutions to an optimization problem gradually evolves toward better solutions. The aim is the optimization of a given function, the so called fitness function, which is evaluated upon the initial population as well as upon the solutions after successive generations. In this paper, we present the design of a GA and its implementation on state-of-the-art FPGAs. Our approach optimizes significantly more fitness functions than any other proposed solution. Several experiments on a platform with a Virtex-II Pro FPGA have been conducted. Implementations on a number of different high-end FPGAs outperforms other reconfigurable systems with a speedup ranging from 1.2x to 96.5x.</description><identifier>ISBN: 1424445027</identifier><identifier>ISBN: 9781424445028</identifier><identifier>DOI: 10.1109/ICSAMOS.2009.5289236</identifier><identifier>LCCN: 2009903596</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cement industry ; Computer architecture ; Concrete ; Genetic algorithms ; Graphics ; Multicore processing</subject><ispartof>2009 International Symposium on Systems, Architectures, Modeling, and Simulation, 2009, p.9-16</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5289236$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5289236$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vavouras, M.</creatorcontrib><creatorcontrib>Papadimitriou, K.</creatorcontrib><creatorcontrib>Papaefstathiou, I.</creatorcontrib><title>High-speed FPGA-based implementations of a Genetic Algorithm</title><title>2009 International Symposium on Systems, Architectures, Modeling, and Simulation</title><addtitle>ICSAMOS</addtitle><description>One very promising approach for solving complex optimizing and search problems is the Genetic Algorithm (GA) one. Based on this scheme a population of abstract representations of candidate solutions to an optimization problem gradually evolves toward better solutions. The aim is the optimization of a given function, the so called fitness function, which is evaluated upon the initial population as well as upon the solutions after successive generations. In this paper, we present the design of a GA and its implementation on state-of-the-art FPGAs. Our approach optimizes significantly more fitness functions than any other proposed solution. Several experiments on a platform with a Virtex-II Pro FPGA have been conducted. Implementations on a number of different high-end FPGAs outperforms other reconfigurable systems with a speedup ranging from 1.2x to 96.5x.</description><subject>Cement industry</subject><subject>Computer architecture</subject><subject>Concrete</subject><subject>Genetic algorithms</subject><subject>Graphics</subject><subject>Multicore processing</subject><isbn>1424445027</isbn><isbn>9781424445028</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAURAUl0CbNFyQL_4Bd6eplQTfGNE4gJYVkH2TrOlHxC8ub_n1dmtnMgYFhhpAtowlj1Lwd8nP2eTonQKlJJKQGuHoiSyZACCEp6AVZ_mWGcmnUM1mH8E1nCQlcqxfyvve3exwGRBftvoosLm2Y0bdDgy12k51834WoryMbFdjh5Ksoa2796Kd7-0oWtW0Crh--IpfdxyXfx8dTccizY-wB2BSb0lhdArjSsFRzbdFUeh4qVckAU0edrpFKzpwCZzTaqhLK2tRIUDPzFdn813pEvA6jb-34c32c5b_TBEhO</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Vavouras, M.</creator><creator>Papadimitriou, K.</creator><creator>Papaefstathiou, I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>High-speed FPGA-based implementations of a Genetic Algorithm</title><author>Vavouras, M. ; Papadimitriou, K. ; Papaefstathiou, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i221t-9b9a7b22db918737ae9c792356b12e8d0d7fe0531d62d97eacc46aa89526acc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cement industry</topic><topic>Computer architecture</topic><topic>Concrete</topic><topic>Genetic algorithms</topic><topic>Graphics</topic><topic>Multicore processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Vavouras, M.</creatorcontrib><creatorcontrib>Papadimitriou, K.</creatorcontrib><creatorcontrib>Papaefstathiou, I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vavouras, M.</au><au>Papadimitriou, K.</au><au>Papaefstathiou, I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>High-speed FPGA-based implementations of a Genetic Algorithm</atitle><btitle>2009 International Symposium on Systems, Architectures, Modeling, and Simulation</btitle><stitle>ICSAMOS</stitle><date>2009-07</date><risdate>2009</risdate><spage>9</spage><epage>16</epage><pages>9-16</pages><isbn>1424445027</isbn><isbn>9781424445028</isbn><abstract>One very promising approach for solving complex optimizing and search problems is the Genetic Algorithm (GA) one. Based on this scheme a population of abstract representations of candidate solutions to an optimization problem gradually evolves toward better solutions. The aim is the optimization of a given function, the so called fitness function, which is evaluated upon the initial population as well as upon the solutions after successive generations. In this paper, we present the design of a GA and its implementation on state-of-the-art FPGAs. Our approach optimizes significantly more fitness functions than any other proposed solution. Several experiments on a platform with a Virtex-II Pro FPGA have been conducted. Implementations on a number of different high-end FPGAs outperforms other reconfigurable systems with a speedup ranging from 1.2x to 96.5x.</abstract><pub>IEEE</pub><doi>10.1109/ICSAMOS.2009.5289236</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424445027 |
ispartof | 2009 International Symposium on Systems, Architectures, Modeling, and Simulation, 2009, p.9-16 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5289236 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cement industry Computer architecture Concrete Genetic algorithms Graphics Multicore processing |
title | High-speed FPGA-based implementations of a Genetic Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T08%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=High-speed%20FPGA-based%20implementations%20of%20a%20Genetic%20Algorithm&rft.btitle=2009%20International%20Symposium%20on%20Systems,%20Architectures,%20Modeling,%20and%20Simulation&rft.au=Vavouras,%20M.&rft.date=2009-07&rft.spage=9&rft.epage=16&rft.pages=9-16&rft.isbn=1424445027&rft.isbn_list=9781424445028&rft_id=info:doi/10.1109/ICSAMOS.2009.5289236&rft_dat=%3Cieee_6IE%3E5289236%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5289236&rfr_iscdi=true |