High-speed FPGA-based implementations of a Genetic Algorithm

One very promising approach for solving complex optimizing and search problems is the Genetic Algorithm (GA) one. Based on this scheme a population of abstract representations of candidate solutions to an optimization problem gradually evolves toward better solutions. The aim is the optimization of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vavouras, M., Papadimitriou, K., Papaefstathiou, I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue
container_start_page 9
container_title
container_volume
creator Vavouras, M.
Papadimitriou, K.
Papaefstathiou, I.
description One very promising approach for solving complex optimizing and search problems is the Genetic Algorithm (GA) one. Based on this scheme a population of abstract representations of candidate solutions to an optimization problem gradually evolves toward better solutions. The aim is the optimization of a given function, the so called fitness function, which is evaluated upon the initial population as well as upon the solutions after successive generations. In this paper, we present the design of a GA and its implementation on state-of-the-art FPGAs. Our approach optimizes significantly more fitness functions than any other proposed solution. Several experiments on a platform with a Virtex-II Pro FPGA have been conducted. Implementations on a number of different high-end FPGAs outperforms other reconfigurable systems with a speedup ranging from 1.2x to 96.5x.
doi_str_mv 10.1109/ICSAMOS.2009.5289236
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5289236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5289236</ieee_id><sourcerecordid>5289236</sourcerecordid><originalsourceid>FETCH-LOGICAL-i221t-9b9a7b22db918737ae9c792356b12e8d0d7fe0531d62d97eacc46aa89526acc3</originalsourceid><addsrcrecordid>eNotj8tqwzAURAUl0CbNFyQL_4Bd6eplQTfGNE4gJYVkH2TrOlHxC8ub_n1dmtnMgYFhhpAtowlj1Lwd8nP2eTonQKlJJKQGuHoiSyZACCEp6AVZ_mWGcmnUM1mH8E1nCQlcqxfyvve3exwGRBftvoosLm2Y0bdDgy12k51834WoryMbFdjh5Ksoa2796Kd7-0oWtW0Crh--IpfdxyXfx8dTccizY-wB2BSb0lhdArjSsFRzbdFUeh4qVckAU0edrpFKzpwCZzTaqhLK2tRIUDPzFdn813pEvA6jb-34c32c5b_TBEhO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>High-speed FPGA-based implementations of a Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vavouras, M. ; Papadimitriou, K. ; Papaefstathiou, I.</creator><creatorcontrib>Vavouras, M. ; Papadimitriou, K. ; Papaefstathiou, I.</creatorcontrib><description>One very promising approach for solving complex optimizing and search problems is the Genetic Algorithm (GA) one. Based on this scheme a population of abstract representations of candidate solutions to an optimization problem gradually evolves toward better solutions. The aim is the optimization of a given function, the so called fitness function, which is evaluated upon the initial population as well as upon the solutions after successive generations. In this paper, we present the design of a GA and its implementation on state-of-the-art FPGAs. Our approach optimizes significantly more fitness functions than any other proposed solution. Several experiments on a platform with a Virtex-II Pro FPGA have been conducted. Implementations on a number of different high-end FPGAs outperforms other reconfigurable systems with a speedup ranging from 1.2x to 96.5x.</description><identifier>ISBN: 1424445027</identifier><identifier>ISBN: 9781424445028</identifier><identifier>DOI: 10.1109/ICSAMOS.2009.5289236</identifier><identifier>LCCN: 2009903596</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cement industry ; Computer architecture ; Concrete ; Genetic algorithms ; Graphics ; Multicore processing</subject><ispartof>2009 International Symposium on Systems, Architectures, Modeling, and Simulation, 2009, p.9-16</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5289236$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5289236$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vavouras, M.</creatorcontrib><creatorcontrib>Papadimitriou, K.</creatorcontrib><creatorcontrib>Papaefstathiou, I.</creatorcontrib><title>High-speed FPGA-based implementations of a Genetic Algorithm</title><title>2009 International Symposium on Systems, Architectures, Modeling, and Simulation</title><addtitle>ICSAMOS</addtitle><description>One very promising approach for solving complex optimizing and search problems is the Genetic Algorithm (GA) one. Based on this scheme a population of abstract representations of candidate solutions to an optimization problem gradually evolves toward better solutions. The aim is the optimization of a given function, the so called fitness function, which is evaluated upon the initial population as well as upon the solutions after successive generations. In this paper, we present the design of a GA and its implementation on state-of-the-art FPGAs. Our approach optimizes significantly more fitness functions than any other proposed solution. Several experiments on a platform with a Virtex-II Pro FPGA have been conducted. Implementations on a number of different high-end FPGAs outperforms other reconfigurable systems with a speedup ranging from 1.2x to 96.5x.</description><subject>Cement industry</subject><subject>Computer architecture</subject><subject>Concrete</subject><subject>Genetic algorithms</subject><subject>Graphics</subject><subject>Multicore processing</subject><isbn>1424445027</isbn><isbn>9781424445028</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAURAUl0CbNFyQL_4Bd6eplQTfGNE4gJYVkH2TrOlHxC8ub_n1dmtnMgYFhhpAtowlj1Lwd8nP2eTonQKlJJKQGuHoiSyZACCEp6AVZ_mWGcmnUM1mH8E1nCQlcqxfyvve3exwGRBftvoosLm2Y0bdDgy12k51834WoryMbFdjh5Ksoa2796Kd7-0oWtW0Crh--IpfdxyXfx8dTccizY-wB2BSb0lhdArjSsFRzbdFUeh4qVckAU0edrpFKzpwCZzTaqhLK2tRIUDPzFdn813pEvA6jb-34c32c5b_TBEhO</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Vavouras, M.</creator><creator>Papadimitriou, K.</creator><creator>Papaefstathiou, I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>High-speed FPGA-based implementations of a Genetic Algorithm</title><author>Vavouras, M. ; Papadimitriou, K. ; Papaefstathiou, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i221t-9b9a7b22db918737ae9c792356b12e8d0d7fe0531d62d97eacc46aa89526acc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cement industry</topic><topic>Computer architecture</topic><topic>Concrete</topic><topic>Genetic algorithms</topic><topic>Graphics</topic><topic>Multicore processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Vavouras, M.</creatorcontrib><creatorcontrib>Papadimitriou, K.</creatorcontrib><creatorcontrib>Papaefstathiou, I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vavouras, M.</au><au>Papadimitriou, K.</au><au>Papaefstathiou, I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>High-speed FPGA-based implementations of a Genetic Algorithm</atitle><btitle>2009 International Symposium on Systems, Architectures, Modeling, and Simulation</btitle><stitle>ICSAMOS</stitle><date>2009-07</date><risdate>2009</risdate><spage>9</spage><epage>16</epage><pages>9-16</pages><isbn>1424445027</isbn><isbn>9781424445028</isbn><abstract>One very promising approach for solving complex optimizing and search problems is the Genetic Algorithm (GA) one. Based on this scheme a population of abstract representations of candidate solutions to an optimization problem gradually evolves toward better solutions. The aim is the optimization of a given function, the so called fitness function, which is evaluated upon the initial population as well as upon the solutions after successive generations. In this paper, we present the design of a GA and its implementation on state-of-the-art FPGAs. Our approach optimizes significantly more fitness functions than any other proposed solution. Several experiments on a platform with a Virtex-II Pro FPGA have been conducted. Implementations on a number of different high-end FPGAs outperforms other reconfigurable systems with a speedup ranging from 1.2x to 96.5x.</abstract><pub>IEEE</pub><doi>10.1109/ICSAMOS.2009.5289236</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424445027
ispartof 2009 International Symposium on Systems, Architectures, Modeling, and Simulation, 2009, p.9-16
issn
language eng
recordid cdi_ieee_primary_5289236
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cement industry
Computer architecture
Concrete
Genetic algorithms
Graphics
Multicore processing
title High-speed FPGA-based implementations of a Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T08%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=High-speed%20FPGA-based%20implementations%20of%20a%20Genetic%20Algorithm&rft.btitle=2009%20International%20Symposium%20on%20Systems,%20Architectures,%20Modeling,%20and%20Simulation&rft.au=Vavouras,%20M.&rft.date=2009-07&rft.spage=9&rft.epage=16&rft.pages=9-16&rft.isbn=1424445027&rft.isbn_list=9781424445028&rft_id=info:doi/10.1109/ICSAMOS.2009.5289236&rft_dat=%3Cieee_6IE%3E5289236%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5289236&rfr_iscdi=true