The Model of Vehicle Position Estimation and Prediction Based on State-Space Approach

As one part of ITS (intelligent transportation system), IRS (intelligent road system) focus on improving the road safety and operation efficiency of highway system based on the idea of cooperation between road infrastructure and vehicles. Many IRS applications such as collision avoidance, automatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li Pingsheng, Xie Xiaoli, Li Bin, Wang Meng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue
container_start_page 822
container_title
container_volume 3
creator Li Pingsheng
Xie Xiaoli
Li Bin
Wang Meng
description As one part of ITS (intelligent transportation system), IRS (intelligent road system) focus on improving the road safety and operation efficiency of highway system based on the idea of cooperation between road infrastructure and vehicles. Many IRS applications such as collision avoidance, automatic lane changing and others are principally based on the knowledge of the accurate geographical locations of interrelated vehicles nearby. Based on the state-space approach, this paper addresses the distributed position estimation problem. Specially, the state transfer matrix and measure matrix of the vehicle are established. And based on vehicle dynamics and Kalman filtering, the model of the position state estimation and prediction are formulated. Finally, we found that this approach can get more accurate results by the simulation under condition that the cooperative vehicle communication is available.
doi_str_mv 10.1109/ICICTA.2009.664
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5288116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5288116</ieee_id><sourcerecordid>5288116</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3f31f945829d2743c5ce75eb14a76266da8a7f324a43300372594ee3f90488f43</originalsourceid><addsrcrecordid>eNotjj1PwzAURS2hStDSmYHFfyDh-dseQ1QgUhGVmrJWJnlWjEITxVn495TCdM89w9Ul5I5Bzhi4h6qsyrrIOYDLtZZXZAlGOyUsSLUgy1_vQHMjrsk6pU8AYE4bpeGGHOoO6evQYk-HQN-xi02PdDekOMfhRDdpjl_-gv7U0t2EbWwu9dEnbOkZ9rOfMduPvkFajOM0-Ka7JYvg-4Tr_1yRw9OmLl-y7dtzVRbbLDKj5kwEwYKTynLXciNFoxo0Cj-Y9EZzrVtvvQmCSy-FABCGKycRRXAgrQ1SrMj9325ExOM4nb9O30fFrWVMix9J608u</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Model of Vehicle Position Estimation and Prediction Based on State-Space Approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Li Pingsheng ; Xie Xiaoli ; Li Bin ; Wang Meng</creator><creatorcontrib>Li Pingsheng ; Xie Xiaoli ; Li Bin ; Wang Meng</creatorcontrib><description>As one part of ITS (intelligent transportation system), IRS (intelligent road system) focus on improving the road safety and operation efficiency of highway system based on the idea of cooperation between road infrastructure and vehicles. Many IRS applications such as collision avoidance, automatic lane changing and others are principally based on the knowledge of the accurate geographical locations of interrelated vehicles nearby. Based on the state-space approach, this paper addresses the distributed position estimation problem. Specially, the state transfer matrix and measure matrix of the vehicle are established. And based on vehicle dynamics and Kalman filtering, the model of the position state estimation and prediction are formulated. Finally, we found that this approach can get more accurate results by the simulation under condition that the cooperative vehicle communication is available.</description><identifier>ISBN: 0769538045</identifier><identifier>ISBN: 9780769538044</identifier><identifier>DOI: 10.1109/ICICTA.2009.664</identifier><identifier>LCCN: 2009906273</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automated highways ; Collision avoidance ; estimation problem ; Intelligent Road System ; Intelligent transportation systems ; Intelligent vehicles ; Kalman filtering ; Predictive models ; Road safety ; Road transportation ; Road vehicles ; State estimation ; state-space approach ; Vehicle safety</subject><ispartof>2009 Second International Conference on Intelligent Computation Technology and Automation, 2009, Vol.3, p.822-825</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5288116$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5288116$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li Pingsheng</creatorcontrib><creatorcontrib>Xie Xiaoli</creatorcontrib><creatorcontrib>Li Bin</creatorcontrib><creatorcontrib>Wang Meng</creatorcontrib><title>The Model of Vehicle Position Estimation and Prediction Based on State-Space Approach</title><title>2009 Second International Conference on Intelligent Computation Technology and Automation</title><addtitle>ICICTA</addtitle><description>As one part of ITS (intelligent transportation system), IRS (intelligent road system) focus on improving the road safety and operation efficiency of highway system based on the idea of cooperation between road infrastructure and vehicles. Many IRS applications such as collision avoidance, automatic lane changing and others are principally based on the knowledge of the accurate geographical locations of interrelated vehicles nearby. Based on the state-space approach, this paper addresses the distributed position estimation problem. Specially, the state transfer matrix and measure matrix of the vehicle are established. And based on vehicle dynamics and Kalman filtering, the model of the position state estimation and prediction are formulated. Finally, we found that this approach can get more accurate results by the simulation under condition that the cooperative vehicle communication is available.</description><subject>Automated highways</subject><subject>Collision avoidance</subject><subject>estimation problem</subject><subject>Intelligent Road System</subject><subject>Intelligent transportation systems</subject><subject>Intelligent vehicles</subject><subject>Kalman filtering</subject><subject>Predictive models</subject><subject>Road safety</subject><subject>Road transportation</subject><subject>Road vehicles</subject><subject>State estimation</subject><subject>state-space approach</subject><subject>Vehicle safety</subject><isbn>0769538045</isbn><isbn>9780769538044</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjj1PwzAURS2hStDSmYHFfyDh-dseQ1QgUhGVmrJWJnlWjEITxVn495TCdM89w9Ul5I5Bzhi4h6qsyrrIOYDLtZZXZAlGOyUsSLUgy1_vQHMjrsk6pU8AYE4bpeGGHOoO6evQYk-HQN-xi02PdDekOMfhRDdpjl_-gv7U0t2EbWwu9dEnbOkZ9rOfMduPvkFajOM0-Ka7JYvg-4Tr_1yRw9OmLl-y7dtzVRbbLDKj5kwEwYKTynLXciNFoxo0Cj-Y9EZzrVtvvQmCSy-FABCGKycRRXAgrQ1SrMj9325ExOM4nb9O30fFrWVMix9J608u</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Li Pingsheng</creator><creator>Xie Xiaoli</creator><creator>Li Bin</creator><creator>Wang Meng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>The Model of Vehicle Position Estimation and Prediction Based on State-Space Approach</title><author>Li Pingsheng ; Xie Xiaoli ; Li Bin ; Wang Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3f31f945829d2743c5ce75eb14a76266da8a7f324a43300372594ee3f90488f43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Automated highways</topic><topic>Collision avoidance</topic><topic>estimation problem</topic><topic>Intelligent Road System</topic><topic>Intelligent transportation systems</topic><topic>Intelligent vehicles</topic><topic>Kalman filtering</topic><topic>Predictive models</topic><topic>Road safety</topic><topic>Road transportation</topic><topic>Road vehicles</topic><topic>State estimation</topic><topic>state-space approach</topic><topic>Vehicle safety</topic><toplevel>online_resources</toplevel><creatorcontrib>Li Pingsheng</creatorcontrib><creatorcontrib>Xie Xiaoli</creatorcontrib><creatorcontrib>Li Bin</creatorcontrib><creatorcontrib>Wang Meng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li Pingsheng</au><au>Xie Xiaoli</au><au>Li Bin</au><au>Wang Meng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Model of Vehicle Position Estimation and Prediction Based on State-Space Approach</atitle><btitle>2009 Second International Conference on Intelligent Computation Technology and Automation</btitle><stitle>ICICTA</stitle><date>2009-10</date><risdate>2009</risdate><volume>3</volume><spage>822</spage><epage>825</epage><pages>822-825</pages><isbn>0769538045</isbn><isbn>9780769538044</isbn><abstract>As one part of ITS (intelligent transportation system), IRS (intelligent road system) focus on improving the road safety and operation efficiency of highway system based on the idea of cooperation between road infrastructure and vehicles. Many IRS applications such as collision avoidance, automatic lane changing and others are principally based on the knowledge of the accurate geographical locations of interrelated vehicles nearby. Based on the state-space approach, this paper addresses the distributed position estimation problem. Specially, the state transfer matrix and measure matrix of the vehicle are established. And based on vehicle dynamics and Kalman filtering, the model of the position state estimation and prediction are formulated. Finally, we found that this approach can get more accurate results by the simulation under condition that the cooperative vehicle communication is available.</abstract><pub>IEEE</pub><doi>10.1109/ICICTA.2009.664</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769538045
ispartof 2009 Second International Conference on Intelligent Computation Technology and Automation, 2009, Vol.3, p.822-825
issn
language eng
recordid cdi_ieee_primary_5288116
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automated highways
Collision avoidance
estimation problem
Intelligent Road System
Intelligent transportation systems
Intelligent vehicles
Kalman filtering
Predictive models
Road safety
Road transportation
Road vehicles
State estimation
state-space approach
Vehicle safety
title The Model of Vehicle Position Estimation and Prediction Based on State-Space Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Model%20of%20Vehicle%20Position%20Estimation%20and%20Prediction%20Based%20on%20State-Space%20Approach&rft.btitle=2009%20Second%20International%20Conference%20on%20Intelligent%20Computation%20Technology%20and%20Automation&rft.au=Li%20Pingsheng&rft.date=2009-10&rft.volume=3&rft.spage=822&rft.epage=825&rft.pages=822-825&rft.isbn=0769538045&rft.isbn_list=9780769538044&rft_id=info:doi/10.1109/ICICTA.2009.664&rft_dat=%3Cieee_6IE%3E5288116%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5288116&rfr_iscdi=true