Expertise Modeling and Recommendation in Online Question and Answer Forums
Question and answer forums provide a method of connecting users and resources that can leverage both the static and dynamic (live) capabilities of a network of human users. We present a recommender for selecting the most appropriate responders given a question. The goal of this work is to encourage...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 488 |
---|---|
container_issue | |
container_start_page | 481 |
container_title | |
container_volume | 4 |
creator | Budalakoti, S. DeAngelis, D. Barber, K.S. |
description | Question and answer forums provide a method of connecting users and resources that can leverage both the static and dynamic (live) capabilities of a network of human users. We present a recommender for selecting the most appropriate responders given a question. The goal of this work is to encourage expert participation in QA forums by reducing the time investment needed by an expert to find a suitable question, decrease responder load, and to increase questioner confidence in the responses of others. The two primary contributions of this work are: 1. a generative model for characterizing the production of content in an online question and answer forum and 2. a decision theoretic framework for recommending expert participants while maintaining questioner satisfaction and distributing responder load. We have also developed two new metrics tailored to QA forums: responder load and questioner satisfaction. These metrics are used to evaluate the performance of our recommender system on datasets harvested from Yahoo! Answers. Experiments across several topic domains demonstrate our systems ability to predict responder identities and suggest new responders that are likely to have the appropriate expertise. |
doi_str_mv | 10.1109/CSE.2009.62 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5284216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5284216</ieee_id><sourcerecordid>5284216</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1272-21836bb1e90b85992f2cbb44dc5e7fd24090b875661dec0f96aaebd3c51ab263</originalsourceid><addsrcrecordid>eNotT1tLwzAYjYigzj756Ev-QGvy5dLmcZTOKZOh7n0kzVeJrOloNtR_b6eel8O5cOAQcstZwTkz9_VbUwBjptBwRq5ZqY0SFQh-TjJTVlyClEoIKS9JltIHmzBpCfyKPDVfexwPISF9HjzuQnynNnr6iu3Q9xi9PYQh0hDpOk4h0pcjpl_r1JrH9IkjXQzjsU835KKzu4TZP8_IZtFs6mW-Wj881vNVHjiUkAOvhHaOo2GuUsZAB61zUvpWYdl5kOwUlEpr7rFlndHWovOiVdw60GJG7v5mAyJu92Po7fi9VVBNf7T4AVuyTHI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Expertise Modeling and Recommendation in Online Question and Answer Forums</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Budalakoti, S. ; DeAngelis, D. ; Barber, K.S.</creator><creatorcontrib>Budalakoti, S. ; DeAngelis, D. ; Barber, K.S.</creatorcontrib><description>Question and answer forums provide a method of connecting users and resources that can leverage both the static and dynamic (live) capabilities of a network of human users. We present a recommender for selecting the most appropriate responders given a question. The goal of this work is to encourage expert participation in QA forums by reducing the time investment needed by an expert to find a suitable question, decrease responder load, and to increase questioner confidence in the responses of others. The two primary contributions of this work are: 1. a generative model for characterizing the production of content in an online question and answer forum and 2. a decision theoretic framework for recommending expert participants while maintaining questioner satisfaction and distributing responder load. We have also developed two new metrics tailored to QA forums: responder load and questioner satisfaction. These metrics are used to evaluate the performance of our recommender system on datasets harvested from Yahoo! Answers. Experiments across several topic domains demonstrate our systems ability to predict responder identities and suggest new responders that are likely to have the appropriate expertise.</description><identifier>ISBN: 9781424453344</identifier><identifier>ISBN: 1424453348</identifier><identifier>EISBN: 0769538231</identifier><identifier>EISBN: 9780769538235</identifier><identifier>DOI: 10.1109/CSE.2009.62</identifier><language>eng</language><publisher>IEEE</publisher><subject>Character generation ; Computational intelligence ; Computer networks ; expertise ; Humans ; Intelligent networks ; Intelligent systems ; Investments ; Joining processes ; Laboratories ; Production ; question and answer ; recommendation</subject><ispartof>2009 International Conference on Computational Science and Engineering, 2009, Vol.4, p.481-488</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5284216$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5284216$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Budalakoti, S.</creatorcontrib><creatorcontrib>DeAngelis, D.</creatorcontrib><creatorcontrib>Barber, K.S.</creatorcontrib><title>Expertise Modeling and Recommendation in Online Question and Answer Forums</title><title>2009 International Conference on Computational Science and Engineering</title><addtitle>CSE</addtitle><description>Question and answer forums provide a method of connecting users and resources that can leverage both the static and dynamic (live) capabilities of a network of human users. We present a recommender for selecting the most appropriate responders given a question. The goal of this work is to encourage expert participation in QA forums by reducing the time investment needed by an expert to find a suitable question, decrease responder load, and to increase questioner confidence in the responses of others. The two primary contributions of this work are: 1. a generative model for characterizing the production of content in an online question and answer forum and 2. a decision theoretic framework for recommending expert participants while maintaining questioner satisfaction and distributing responder load. We have also developed two new metrics tailored to QA forums: responder load and questioner satisfaction. These metrics are used to evaluate the performance of our recommender system on datasets harvested from Yahoo! Answers. Experiments across several topic domains demonstrate our systems ability to predict responder identities and suggest new responders that are likely to have the appropriate expertise.</description><subject>Character generation</subject><subject>Computational intelligence</subject><subject>Computer networks</subject><subject>expertise</subject><subject>Humans</subject><subject>Intelligent networks</subject><subject>Intelligent systems</subject><subject>Investments</subject><subject>Joining processes</subject><subject>Laboratories</subject><subject>Production</subject><subject>question and answer</subject><subject>recommendation</subject><isbn>9781424453344</isbn><isbn>1424453348</isbn><isbn>0769538231</isbn><isbn>9780769538235</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT1tLwzAYjYigzj756Ev-QGvy5dLmcZTOKZOh7n0kzVeJrOloNtR_b6eel8O5cOAQcstZwTkz9_VbUwBjptBwRq5ZqY0SFQh-TjJTVlyClEoIKS9JltIHmzBpCfyKPDVfexwPISF9HjzuQnynNnr6iu3Q9xi9PYQh0hDpOk4h0pcjpl_r1JrH9IkjXQzjsU835KKzu4TZP8_IZtFs6mW-Wj881vNVHjiUkAOvhHaOo2GuUsZAB61zUvpWYdl5kOwUlEpr7rFlndHWovOiVdw60GJG7v5mAyJu92Po7fi9VVBNf7T4AVuyTHI</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Budalakoti, S.</creator><creator>DeAngelis, D.</creator><creator>Barber, K.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>Expertise Modeling and Recommendation in Online Question and Answer Forums</title><author>Budalakoti, S. ; DeAngelis, D. ; Barber, K.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1272-21836bb1e90b85992f2cbb44dc5e7fd24090b875661dec0f96aaebd3c51ab263</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Character generation</topic><topic>Computational intelligence</topic><topic>Computer networks</topic><topic>expertise</topic><topic>Humans</topic><topic>Intelligent networks</topic><topic>Intelligent systems</topic><topic>Investments</topic><topic>Joining processes</topic><topic>Laboratories</topic><topic>Production</topic><topic>question and answer</topic><topic>recommendation</topic><toplevel>online_resources</toplevel><creatorcontrib>Budalakoti, S.</creatorcontrib><creatorcontrib>DeAngelis, D.</creatorcontrib><creatorcontrib>Barber, K.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Budalakoti, S.</au><au>DeAngelis, D.</au><au>Barber, K.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Expertise Modeling and Recommendation in Online Question and Answer Forums</atitle><btitle>2009 International Conference on Computational Science and Engineering</btitle><stitle>CSE</stitle><date>2009-08</date><risdate>2009</risdate><volume>4</volume><spage>481</spage><epage>488</epage><pages>481-488</pages><isbn>9781424453344</isbn><isbn>1424453348</isbn><eisbn>0769538231</eisbn><eisbn>9780769538235</eisbn><abstract>Question and answer forums provide a method of connecting users and resources that can leverage both the static and dynamic (live) capabilities of a network of human users. We present a recommender for selecting the most appropriate responders given a question. The goal of this work is to encourage expert participation in QA forums by reducing the time investment needed by an expert to find a suitable question, decrease responder load, and to increase questioner confidence in the responses of others. The two primary contributions of this work are: 1. a generative model for characterizing the production of content in an online question and answer forum and 2. a decision theoretic framework for recommending expert participants while maintaining questioner satisfaction and distributing responder load. We have also developed two new metrics tailored to QA forums: responder load and questioner satisfaction. These metrics are used to evaluate the performance of our recommender system on datasets harvested from Yahoo! Answers. Experiments across several topic domains demonstrate our systems ability to predict responder identities and suggest new responders that are likely to have the appropriate expertise.</abstract><pub>IEEE</pub><doi>10.1109/CSE.2009.62</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424453344 |
ispartof | 2009 International Conference on Computational Science and Engineering, 2009, Vol.4, p.481-488 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5284216 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Character generation Computational intelligence Computer networks expertise Humans Intelligent networks Intelligent systems Investments Joining processes Laboratories Production question and answer recommendation |
title | Expertise Modeling and Recommendation in Online Question and Answer Forums |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Expertise%20Modeling%20and%20Recommendation%20in%20Online%20Question%20and%20Answer%20Forums&rft.btitle=2009%20International%20Conference%20on%20Computational%20Science%20and%20Engineering&rft.au=Budalakoti,%20S.&rft.date=2009-08&rft.volume=4&rft.spage=481&rft.epage=488&rft.pages=481-488&rft.isbn=9781424453344&rft.isbn_list=1424453348&rft_id=info:doi/10.1109/CSE.2009.62&rft_dat=%3Cieee_6IE%3E5284216%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769538231&rft.eisbn_list=9780769538235&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5284216&rfr_iscdi=true |