An Evolutionary Approach for Multi-objective 3D Differentiated Sensor Network Deployment
This paper describes a multi-objective evolutionary approach for solving multi-objective 3D deployment problems in differentiated wireless sensor networks (WSNs). WSN is a wireless network consisting of spatially distributed autonomous sensors to monitor physical or environmental conditions. Decidin...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | |
container_start_page | 187 |
container_title | |
container_volume | 1 |
creator | Chih-Wei Kang Jian-Hung Chen |
description | This paper describes a multi-objective evolutionary approach for solving multi-objective 3D deployment problems in differentiated wireless sensor networks (WSNs). WSN is a wireless network consisting of spatially distributed autonomous sensors to monitor physical or environmental conditions. Deciding the location of sensor to be deployed on a terrain with the consideration of different criteria is an important issue for the design of wireless sensor network. A multi-objective genetic algorithm is proposed to solve 3D differentiated WSN deployment problems with the objectives of the coverage of sensors, satisfaction of detection levels, and energy conservation. The preliminary experimental results demonstrated that the proposed approach is suitable for solving 3D deployment problems of WSNs with different requirements. |
doi_str_mv | 10.1109/CSE.2009.329 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5283715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5283715</ieee_id><sourcerecordid>5283715</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-bef19962b58626461d1a5e087872ebed0f09b3474cbf8462ff38862c1178064f3</originalsourceid><addsrcrecordid>eNotj0tLw0AcxFdEUGtu3rzsF0jcV_ZxDEl8QNVDe_BW8vgvbk2zYbOt9Nsb0LkMw_wYGITuKckoJeax3NQZI8RknJkLdEuUNDnXjNNLlBilqWBC5JwLcY2Sed6TRUsWjN6gz2LE9ckPx-j82IQzLqYp-Kb7wtYH_HYcokt9u4cuuhNgXuHKWQsBxuiaCD3ewDgv4DvEHx--cQXT4M-Hpb5DV7YZZkj-fYW2T_W2fEnXH8-vZbFOnSExbcFSYyRrcy2ZFJL2tMmBaKUVgxZ6YolpuVCia60WklnL9UJ2lCpNpLB8hR7-Zh0A7KbgDsuJXc40VzTnv5mhUT0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Evolutionary Approach for Multi-objective 3D Differentiated Sensor Network Deployment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chih-Wei Kang ; Jian-Hung Chen</creator><creatorcontrib>Chih-Wei Kang ; Jian-Hung Chen</creatorcontrib><description>This paper describes a multi-objective evolutionary approach for solving multi-objective 3D deployment problems in differentiated wireless sensor networks (WSNs). WSN is a wireless network consisting of spatially distributed autonomous sensors to monitor physical or environmental conditions. Deciding the location of sensor to be deployed on a terrain with the consideration of different criteria is an important issue for the design of wireless sensor network. A multi-objective genetic algorithm is proposed to solve 3D differentiated WSN deployment problems with the objectives of the coverage of sensors, satisfaction of detection levels, and energy conservation. The preliminary experimental results demonstrated that the proposed approach is suitable for solving 3D deployment problems of WSNs with different requirements.</description><identifier>ISBN: 9781424453344</identifier><identifier>ISBN: 1424453348</identifier><identifier>EISBN: 0769538231</identifier><identifier>EISBN: 9780769538235</identifier><identifier>DOI: 10.1109/CSE.2009.329</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer networks ; Computer science ; Computerized monitoring ; Condition monitoring ; Energy conservation ; Energy resources ; Genetic algorithms ; multi-objective optimization ; Sensor phenomena and characterization ; Underwater tracking ; Wireless sensor network ; Wireless sensor networks</subject><ispartof>2009 International Conference on Computational Science and Engineering, 2009, Vol.1, p.187-193</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5283715$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5283715$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chih-Wei Kang</creatorcontrib><creatorcontrib>Jian-Hung Chen</creatorcontrib><title>An Evolutionary Approach for Multi-objective 3D Differentiated Sensor Network Deployment</title><title>2009 International Conference on Computational Science and Engineering</title><addtitle>CSE</addtitle><description>This paper describes a multi-objective evolutionary approach for solving multi-objective 3D deployment problems in differentiated wireless sensor networks (WSNs). WSN is a wireless network consisting of spatially distributed autonomous sensors to monitor physical or environmental conditions. Deciding the location of sensor to be deployed on a terrain with the consideration of different criteria is an important issue for the design of wireless sensor network. A multi-objective genetic algorithm is proposed to solve 3D differentiated WSN deployment problems with the objectives of the coverage of sensors, satisfaction of detection levels, and energy conservation. The preliminary experimental results demonstrated that the proposed approach is suitable for solving 3D deployment problems of WSNs with different requirements.</description><subject>Computer networks</subject><subject>Computer science</subject><subject>Computerized monitoring</subject><subject>Condition monitoring</subject><subject>Energy conservation</subject><subject>Energy resources</subject><subject>Genetic algorithms</subject><subject>multi-objective optimization</subject><subject>Sensor phenomena and characterization</subject><subject>Underwater tracking</subject><subject>Wireless sensor network</subject><subject>Wireless sensor networks</subject><isbn>9781424453344</isbn><isbn>1424453348</isbn><isbn>0769538231</isbn><isbn>9780769538235</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLw0AcxFdEUGtu3rzsF0jcV_ZxDEl8QNVDe_BW8vgvbk2zYbOt9Nsb0LkMw_wYGITuKckoJeax3NQZI8RknJkLdEuUNDnXjNNLlBilqWBC5JwLcY2Sed6TRUsWjN6gz2LE9ckPx-j82IQzLqYp-Kb7wtYH_HYcokt9u4cuuhNgXuHKWQsBxuiaCD3ewDgv4DvEHx--cQXT4M-Hpb5DV7YZZkj-fYW2T_W2fEnXH8-vZbFOnSExbcFSYyRrcy2ZFJL2tMmBaKUVgxZ6YolpuVCia60WklnL9UJ2lCpNpLB8hR7-Zh0A7KbgDsuJXc40VzTnv5mhUT0</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Chih-Wei Kang</creator><creator>Jian-Hung Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>An Evolutionary Approach for Multi-objective 3D Differentiated Sensor Network Deployment</title><author>Chih-Wei Kang ; Jian-Hung Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-bef19962b58626461d1a5e087872ebed0f09b3474cbf8462ff38862c1178064f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer networks</topic><topic>Computer science</topic><topic>Computerized monitoring</topic><topic>Condition monitoring</topic><topic>Energy conservation</topic><topic>Energy resources</topic><topic>Genetic algorithms</topic><topic>multi-objective optimization</topic><topic>Sensor phenomena and characterization</topic><topic>Underwater tracking</topic><topic>Wireless sensor network</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Chih-Wei Kang</creatorcontrib><creatorcontrib>Jian-Hung Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chih-Wei Kang</au><au>Jian-Hung Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Evolutionary Approach for Multi-objective 3D Differentiated Sensor Network Deployment</atitle><btitle>2009 International Conference on Computational Science and Engineering</btitle><stitle>CSE</stitle><date>2009-08</date><risdate>2009</risdate><volume>1</volume><spage>187</spage><epage>193</epage><pages>187-193</pages><isbn>9781424453344</isbn><isbn>1424453348</isbn><eisbn>0769538231</eisbn><eisbn>9780769538235</eisbn><abstract>This paper describes a multi-objective evolutionary approach for solving multi-objective 3D deployment problems in differentiated wireless sensor networks (WSNs). WSN is a wireless network consisting of spatially distributed autonomous sensors to monitor physical or environmental conditions. Deciding the location of sensor to be deployed on a terrain with the consideration of different criteria is an important issue for the design of wireless sensor network. A multi-objective genetic algorithm is proposed to solve 3D differentiated WSN deployment problems with the objectives of the coverage of sensors, satisfaction of detection levels, and energy conservation. The preliminary experimental results demonstrated that the proposed approach is suitable for solving 3D deployment problems of WSNs with different requirements.</abstract><pub>IEEE</pub><doi>10.1109/CSE.2009.329</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424453344 |
ispartof | 2009 International Conference on Computational Science and Engineering, 2009, Vol.1, p.187-193 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5283715 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer networks Computer science Computerized monitoring Condition monitoring Energy conservation Energy resources Genetic algorithms multi-objective optimization Sensor phenomena and characterization Underwater tracking Wireless sensor network Wireless sensor networks |
title | An Evolutionary Approach for Multi-objective 3D Differentiated Sensor Network Deployment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Evolutionary%20Approach%20for%20Multi-objective%203D%20Differentiated%20Sensor%20Network%20Deployment&rft.btitle=2009%20International%20Conference%20on%20Computational%20Science%20and%20Engineering&rft.au=Chih-Wei%20Kang&rft.date=2009-08&rft.volume=1&rft.spage=187&rft.epage=193&rft.pages=187-193&rft.isbn=9781424453344&rft.isbn_list=1424453348&rft_id=info:doi/10.1109/CSE.2009.329&rft_dat=%3Cieee_6IE%3E5283715%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769538231&rft.eisbn_list=9780769538235&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5283715&rfr_iscdi=true |