Improved fuzzy load models by clustering techniques in optimal planning of distribution networks

The notion of modeling is essential to modern techniques of control and operation process. Developing a control process in fact means developing a model that allows us to predict the action and reduce the amount of feedback required. Recently the fuzzy modeling has become driving force that today is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cartina, G., Grigoras, G., Bobric, E.C., Comanescu, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Cartina, G.
Grigoras, G.
Bobric, E.C.
Comanescu, D.
description The notion of modeling is essential to modern techniques of control and operation process. Developing a control process in fact means developing a model that allows us to predict the action and reduce the amount of feedback required. Recently the fuzzy modeling has become driving force that today is reflected in many different software and hardware products. The paper presents improvements of the fuzzy load models by clustering techniques in distribution networks planning. The hierarchic clustering techniques, conjunctively with fuzzy modeling, are proposed in this paper for determination of the typical load profiles, customers' categories, and so on. Obtained results demonstrate the ability of the fuzzy load models to overcome difficult aspects encountered in process control and operation problems.
doi_str_mv 10.1109/PTC.2009.5282025
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5282025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5282025</ieee_id><sourcerecordid>5282025</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f53b2145b35e0009dc12389911fa93502fdbf1d2fd5b2b3e938b0e23a8d742703</originalsourceid><addsrcrecordid>eNpVkE1LxDAYhCMiKGvvgpf8gV2TN4ltjrL4sbCgh_W8Ns0bjXaT2qRK99dbcS_O5WEYGIYh5IKzBedMXz1tlgtgTC8UVMBAHZFClxWXICWAUOXxPy_ZKSlSemeTpBL8Wp-Rl9Wu6-MXWuqG_X6kbawt3UWLbaJmpE07pIy9D680Y_MW_OeAifpAY5f9rm5p19Yh_MbRUetT7r0Zso-BBszfsf9I5-TE1W3C4sAZeb673Swf5uvH-9XyZj33vFR57pQwwKUyQuE0T9uGg6i05tzVWigGzhrH7QRlwAjUojIMQdSVLSWUTMzI5V-vR8Rt10_r-nF7-EX8AJewV1o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved fuzzy load models by clustering techniques in optimal planning of distribution networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cartina, G. ; Grigoras, G. ; Bobric, E.C. ; Comanescu, D.</creator><creatorcontrib>Cartina, G. ; Grigoras, G. ; Bobric, E.C. ; Comanescu, D.</creatorcontrib><description>The notion of modeling is essential to modern techniques of control and operation process. Developing a control process in fact means developing a model that allows us to predict the action and reduce the amount of feedback required. Recently the fuzzy modeling has become driving force that today is reflected in many different software and hardware products. The paper presents improvements of the fuzzy load models by clustering techniques in distribution networks planning. The hierarchic clustering techniques, conjunctively with fuzzy modeling, are proposed in this paper for determination of the typical load profiles, customers' categories, and so on. Obtained results demonstrate the ability of the fuzzy load models to overcome difficult aspects encountered in process control and operation problems.</description><identifier>ISBN: 9781424422340</identifier><identifier>ISBN: 1424422345</identifier><identifier>EISBN: 9781424422357</identifier><identifier>EISBN: 1424422353</identifier><identifier>DOI: 10.1109/PTC.2009.5282025</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering techniques ; Decision making ; distribution networks ; Feedback ; Fuzzy control ; fuzzy load models ; Hardware ; Investments ; Load modeling ; load profiles ; optimal planning ; Pattern analysis ; Power systems ; Predictive models ; Process control</subject><ispartof>2009 IEEE Bucharest PowerTech, 2009, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5282025$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5282025$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cartina, G.</creatorcontrib><creatorcontrib>Grigoras, G.</creatorcontrib><creatorcontrib>Bobric, E.C.</creatorcontrib><creatorcontrib>Comanescu, D.</creatorcontrib><title>Improved fuzzy load models by clustering techniques in optimal planning of distribution networks</title><title>2009 IEEE Bucharest PowerTech</title><addtitle>PTC</addtitle><description>The notion of modeling is essential to modern techniques of control and operation process. Developing a control process in fact means developing a model that allows us to predict the action and reduce the amount of feedback required. Recently the fuzzy modeling has become driving force that today is reflected in many different software and hardware products. The paper presents improvements of the fuzzy load models by clustering techniques in distribution networks planning. The hierarchic clustering techniques, conjunctively with fuzzy modeling, are proposed in this paper for determination of the typical load profiles, customers' categories, and so on. Obtained results demonstrate the ability of the fuzzy load models to overcome difficult aspects encountered in process control and operation problems.</description><subject>Clustering techniques</subject><subject>Decision making</subject><subject>distribution networks</subject><subject>Feedback</subject><subject>Fuzzy control</subject><subject>fuzzy load models</subject><subject>Hardware</subject><subject>Investments</subject><subject>Load modeling</subject><subject>load profiles</subject><subject>optimal planning</subject><subject>Pattern analysis</subject><subject>Power systems</subject><subject>Predictive models</subject><subject>Process control</subject><isbn>9781424422340</isbn><isbn>1424422345</isbn><isbn>9781424422357</isbn><isbn>1424422353</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE1LxDAYhCMiKGvvgpf8gV2TN4ltjrL4sbCgh_W8Ns0bjXaT2qRK99dbcS_O5WEYGIYh5IKzBedMXz1tlgtgTC8UVMBAHZFClxWXICWAUOXxPy_ZKSlSemeTpBL8Wp-Rl9Wu6-MXWuqG_X6kbawt3UWLbaJmpE07pIy9D680Y_MW_OeAifpAY5f9rm5p19Yh_MbRUetT7r0Zso-BBszfsf9I5-TE1W3C4sAZeb673Swf5uvH-9XyZj33vFR57pQwwKUyQuE0T9uGg6i05tzVWigGzhrH7QRlwAjUojIMQdSVLSWUTMzI5V-vR8Rt10_r-nF7-EX8AJewV1o</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Cartina, G.</creator><creator>Grigoras, G.</creator><creator>Bobric, E.C.</creator><creator>Comanescu, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Improved fuzzy load models by clustering techniques in optimal planning of distribution networks</title><author>Cartina, G. ; Grigoras, G. ; Bobric, E.C. ; Comanescu, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f53b2145b35e0009dc12389911fa93502fdbf1d2fd5b2b3e938b0e23a8d742703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clustering techniques</topic><topic>Decision making</topic><topic>distribution networks</topic><topic>Feedback</topic><topic>Fuzzy control</topic><topic>fuzzy load models</topic><topic>Hardware</topic><topic>Investments</topic><topic>Load modeling</topic><topic>load profiles</topic><topic>optimal planning</topic><topic>Pattern analysis</topic><topic>Power systems</topic><topic>Predictive models</topic><topic>Process control</topic><toplevel>online_resources</toplevel><creatorcontrib>Cartina, G.</creatorcontrib><creatorcontrib>Grigoras, G.</creatorcontrib><creatorcontrib>Bobric, E.C.</creatorcontrib><creatorcontrib>Comanescu, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cartina, G.</au><au>Grigoras, G.</au><au>Bobric, E.C.</au><au>Comanescu, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved fuzzy load models by clustering techniques in optimal planning of distribution networks</atitle><btitle>2009 IEEE Bucharest PowerTech</btitle><stitle>PTC</stitle><date>2009-06</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781424422340</isbn><isbn>1424422345</isbn><eisbn>9781424422357</eisbn><eisbn>1424422353</eisbn><abstract>The notion of modeling is essential to modern techniques of control and operation process. Developing a control process in fact means developing a model that allows us to predict the action and reduce the amount of feedback required. Recently the fuzzy modeling has become driving force that today is reflected in many different software and hardware products. The paper presents improvements of the fuzzy load models by clustering techniques in distribution networks planning. The hierarchic clustering techniques, conjunctively with fuzzy modeling, are proposed in this paper for determination of the typical load profiles, customers' categories, and so on. Obtained results demonstrate the ability of the fuzzy load models to overcome difficult aspects encountered in process control and operation problems.</abstract><pub>IEEE</pub><doi>10.1109/PTC.2009.5282025</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424422340
ispartof 2009 IEEE Bucharest PowerTech, 2009, p.1-6
issn
language eng
recordid cdi_ieee_primary_5282025
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering techniques
Decision making
distribution networks
Feedback
Fuzzy control
fuzzy load models
Hardware
Investments
Load modeling
load profiles
optimal planning
Pattern analysis
Power systems
Predictive models
Process control
title Improved fuzzy load models by clustering techniques in optimal planning of distribution networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20fuzzy%20load%20models%20by%20clustering%20techniques%20in%20optimal%20planning%20of%20distribution%20networks&rft.btitle=2009%20IEEE%20Bucharest%20PowerTech&rft.au=Cartina,%20G.&rft.date=2009-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781424422340&rft.isbn_list=1424422345&rft_id=info:doi/10.1109/PTC.2009.5282025&rft_dat=%3Cieee_6IE%3E5282025%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424422357&rft.eisbn_list=1424422353&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5282025&rfr_iscdi=true