Affine Adaptation of Local Image Features Using the Hessian Matrix

Local feature detectors that make use of derivative based saliency functions to locate points of interest typically require adaptation processes after initial detection in order to achieve scale and affine covariance. Affine adaptation methods have previously been proposed that make use of the secon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lakemond, R., Fookes, C., Sridharan, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 501
container_issue
container_start_page 496
container_title
container_volume
creator Lakemond, R.
Fookes, C.
Sridharan, S.
description Local feature detectors that make use of derivative based saliency functions to locate points of interest typically require adaptation processes after initial detection in order to achieve scale and affine covariance. Affine adaptation methods have previously been proposed that make use of the second moment matrix to iteratively estimate the affine shape of local image regions. This paper shows that it is possible to use the Hessian matrix to estimate local affine shape in a similar fashion to the second moment matrix. The Hessian matrix requires significantly less computation effort to compute than the second moment matrix, allowing more efficient affine adaptation. It may also be more convenient to use the Hessian matrix, for example, when the Determinant of Hessian detector is used. Experimental evaluation shows that the Hessian matrix is very effective in increasing the efficiency of blob detectors such as the Determinant of Hessian detector, but less effective in combination with the Harris corner detector.
doi_str_mv 10.1109/AVSS.2009.8
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5279937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5279937</ieee_id><sourcerecordid>5279937</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-af846a1362985ddadf0552d498e3e3773b8c0be4dd67189120460aaf53452e633</originalsourceid><addsrcrecordid>eNotjrtOwzAUQI0QElAyMbL4BxL8foyhorRSEEMpa3VbXxejNqliI8HfUwRnOdvRIeSWs4Zz5u_bt-WyEYz5xp2Ra2aN19Jy589J5a3jSiilrNbuklQ5f7ATSgvn7RV5aGNMPdI2wLFASUNPh0i7YQt7ujjADukMoXyOmOkqp35HyzvSOeacoKfPUMb0dUMuIuwzVv-ekNXs8XU6r7uXp8W07erErS41RKcMcGmEdzoECJFpLYLyDiVKa-XGbdkGVQjmd50LpgwDiFqeXtFIOSF3f92EiOvjmA4wfq-1sN5LK38AkjtImQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Affine Adaptation of Local Image Features Using the Hessian Matrix</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lakemond, R. ; Fookes, C. ; Sridharan, S.</creator><creatorcontrib>Lakemond, R. ; Fookes, C. ; Sridharan, S.</creatorcontrib><description>Local feature detectors that make use of derivative based saliency functions to locate points of interest typically require adaptation processes after initial detection in order to achieve scale and affine covariance. Affine adaptation methods have previously been proposed that make use of the second moment matrix to iteratively estimate the affine shape of local image regions. This paper shows that it is possible to use the Hessian matrix to estimate local affine shape in a similar fashion to the second moment matrix. The Hessian matrix requires significantly less computation effort to compute than the second moment matrix, allowing more efficient affine adaptation. It may also be more convenient to use the Hessian matrix, for example, when the Determinant of Hessian detector is used. Experimental evaluation shows that the Hessian matrix is very effective in increasing the efficiency of blob detectors such as the Determinant of Hessian detector, but less effective in combination with the Harris corner detector.</description><identifier>ISBN: 9781424447558</identifier><identifier>ISBN: 1424447550</identifier><identifier>EISBN: 0769537189</identifier><identifier>EISBN: 9780769537184</identifier><identifier>DOI: 10.1109/AVSS.2009.8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive signal detection ; Computer vision ; Covariance matrix ; descriptors ; Detectors ; feature normalization ; Lakes ; Layout ; local image features ; Shape ; shape estimation ; Signal processing ; Surveillance ; Transmission line matrix methods</subject><ispartof>2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, 2009, p.496-501</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5279937$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5279937$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lakemond, R.</creatorcontrib><creatorcontrib>Fookes, C.</creatorcontrib><creatorcontrib>Sridharan, S.</creatorcontrib><title>Affine Adaptation of Local Image Features Using the Hessian Matrix</title><title>2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance</title><addtitle>AVSS</addtitle><description>Local feature detectors that make use of derivative based saliency functions to locate points of interest typically require adaptation processes after initial detection in order to achieve scale and affine covariance. Affine adaptation methods have previously been proposed that make use of the second moment matrix to iteratively estimate the affine shape of local image regions. This paper shows that it is possible to use the Hessian matrix to estimate local affine shape in a similar fashion to the second moment matrix. The Hessian matrix requires significantly less computation effort to compute than the second moment matrix, allowing more efficient affine adaptation. It may also be more convenient to use the Hessian matrix, for example, when the Determinant of Hessian detector is used. Experimental evaluation shows that the Hessian matrix is very effective in increasing the efficiency of blob detectors such as the Determinant of Hessian detector, but less effective in combination with the Harris corner detector.</description><subject>Adaptive signal detection</subject><subject>Computer vision</subject><subject>Covariance matrix</subject><subject>descriptors</subject><subject>Detectors</subject><subject>feature normalization</subject><subject>Lakes</subject><subject>Layout</subject><subject>local image features</subject><subject>Shape</subject><subject>shape estimation</subject><subject>Signal processing</subject><subject>Surveillance</subject><subject>Transmission line matrix methods</subject><isbn>9781424447558</isbn><isbn>1424447550</isbn><isbn>0769537189</isbn><isbn>9780769537184</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjrtOwzAUQI0QElAyMbL4BxL8foyhorRSEEMpa3VbXxejNqliI8HfUwRnOdvRIeSWs4Zz5u_bt-WyEYz5xp2Ra2aN19Jy589J5a3jSiilrNbuklQ5f7ATSgvn7RV5aGNMPdI2wLFASUNPh0i7YQt7ujjADukMoXyOmOkqp35HyzvSOeacoKfPUMb0dUMuIuwzVv-ekNXs8XU6r7uXp8W07erErS41RKcMcGmEdzoECJFpLYLyDiVKa-XGbdkGVQjmd50LpgwDiFqeXtFIOSF3f92EiOvjmA4wfq-1sN5LK38AkjtImQ</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Lakemond, R.</creator><creator>Fookes, C.</creator><creator>Sridharan, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>Affine Adaptation of Local Image Features Using the Hessian Matrix</title><author>Lakemond, R. ; Fookes, C. ; Sridharan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-af846a1362985ddadf0552d498e3e3773b8c0be4dd67189120460aaf53452e633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive signal detection</topic><topic>Computer vision</topic><topic>Covariance matrix</topic><topic>descriptors</topic><topic>Detectors</topic><topic>feature normalization</topic><topic>Lakes</topic><topic>Layout</topic><topic>local image features</topic><topic>Shape</topic><topic>shape estimation</topic><topic>Signal processing</topic><topic>Surveillance</topic><topic>Transmission line matrix methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Lakemond, R.</creatorcontrib><creatorcontrib>Fookes, C.</creatorcontrib><creatorcontrib>Sridharan, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lakemond, R.</au><au>Fookes, C.</au><au>Sridharan, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Affine Adaptation of Local Image Features Using the Hessian Matrix</atitle><btitle>2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance</btitle><stitle>AVSS</stitle><date>2009-09</date><risdate>2009</risdate><spage>496</spage><epage>501</epage><pages>496-501</pages><isbn>9781424447558</isbn><isbn>1424447550</isbn><eisbn>0769537189</eisbn><eisbn>9780769537184</eisbn><abstract>Local feature detectors that make use of derivative based saliency functions to locate points of interest typically require adaptation processes after initial detection in order to achieve scale and affine covariance. Affine adaptation methods have previously been proposed that make use of the second moment matrix to iteratively estimate the affine shape of local image regions. This paper shows that it is possible to use the Hessian matrix to estimate local affine shape in a similar fashion to the second moment matrix. The Hessian matrix requires significantly less computation effort to compute than the second moment matrix, allowing more efficient affine adaptation. It may also be more convenient to use the Hessian matrix, for example, when the Determinant of Hessian detector is used. Experimental evaluation shows that the Hessian matrix is very effective in increasing the efficiency of blob detectors such as the Determinant of Hessian detector, but less effective in combination with the Harris corner detector.</abstract><pub>IEEE</pub><doi>10.1109/AVSS.2009.8</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424447558
ispartof 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, 2009, p.496-501
issn
language eng
recordid cdi_ieee_primary_5279937
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive signal detection
Computer vision
Covariance matrix
descriptors
Detectors
feature normalization
Lakes
Layout
local image features
Shape
shape estimation
Signal processing
Surveillance
Transmission line matrix methods
title Affine Adaptation of Local Image Features Using the Hessian Matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T23%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Affine%20Adaptation%20of%20Local%20Image%20Features%20Using%20the%20Hessian%20Matrix&rft.btitle=2009%20Sixth%20IEEE%20International%20Conference%20on%20Advanced%20Video%20and%20Signal%20Based%20Surveillance&rft.au=Lakemond,%20R.&rft.date=2009-09&rft.spage=496&rft.epage=501&rft.pages=496-501&rft.isbn=9781424447558&rft.isbn_list=1424447550&rft_id=info:doi/10.1109/AVSS.2009.8&rft_dat=%3Cieee_6IE%3E5279937%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769537189&rft.eisbn_list=9780769537184&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5279937&rfr_iscdi=true