Affine Adaptation of Local Image Features Using the Hessian Matrix
Local feature detectors that make use of derivative based saliency functions to locate points of interest typically require adaptation processes after initial detection in order to achieve scale and affine covariance. Affine adaptation methods have previously been proposed that make use of the secon...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 501 |
---|---|
container_issue | |
container_start_page | 496 |
container_title | |
container_volume | |
creator | Lakemond, R. Fookes, C. Sridharan, S. |
description | Local feature detectors that make use of derivative based saliency functions to locate points of interest typically require adaptation processes after initial detection in order to achieve scale and affine covariance. Affine adaptation methods have previously been proposed that make use of the second moment matrix to iteratively estimate the affine shape of local image regions. This paper shows that it is possible to use the Hessian matrix to estimate local affine shape in a similar fashion to the second moment matrix. The Hessian matrix requires significantly less computation effort to compute than the second moment matrix, allowing more efficient affine adaptation. It may also be more convenient to use the Hessian matrix, for example, when the Determinant of Hessian detector is used. Experimental evaluation shows that the Hessian matrix is very effective in increasing the efficiency of blob detectors such as the Determinant of Hessian detector, but less effective in combination with the Harris corner detector. |
doi_str_mv | 10.1109/AVSS.2009.8 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5279937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5279937</ieee_id><sourcerecordid>5279937</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-af846a1362985ddadf0552d498e3e3773b8c0be4dd67189120460aaf53452e633</originalsourceid><addsrcrecordid>eNotjrtOwzAUQI0QElAyMbL4BxL8foyhorRSEEMpa3VbXxejNqliI8HfUwRnOdvRIeSWs4Zz5u_bt-WyEYz5xp2Ra2aN19Jy589J5a3jSiilrNbuklQ5f7ATSgvn7RV5aGNMPdI2wLFASUNPh0i7YQt7ujjADukMoXyOmOkqp35HyzvSOeacoKfPUMb0dUMuIuwzVv-ekNXs8XU6r7uXp8W07erErS41RKcMcGmEdzoECJFpLYLyDiVKa-XGbdkGVQjmd50LpgwDiFqeXtFIOSF3f92EiOvjmA4wfq-1sN5LK38AkjtImQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Affine Adaptation of Local Image Features Using the Hessian Matrix</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lakemond, R. ; Fookes, C. ; Sridharan, S.</creator><creatorcontrib>Lakemond, R. ; Fookes, C. ; Sridharan, S.</creatorcontrib><description>Local feature detectors that make use of derivative based saliency functions to locate points of interest typically require adaptation processes after initial detection in order to achieve scale and affine covariance. Affine adaptation methods have previously been proposed that make use of the second moment matrix to iteratively estimate the affine shape of local image regions. This paper shows that it is possible to use the Hessian matrix to estimate local affine shape in a similar fashion to the second moment matrix. The Hessian matrix requires significantly less computation effort to compute than the second moment matrix, allowing more efficient affine adaptation. It may also be more convenient to use the Hessian matrix, for example, when the Determinant of Hessian detector is used. Experimental evaluation shows that the Hessian matrix is very effective in increasing the efficiency of blob detectors such as the Determinant of Hessian detector, but less effective in combination with the Harris corner detector.</description><identifier>ISBN: 9781424447558</identifier><identifier>ISBN: 1424447550</identifier><identifier>EISBN: 0769537189</identifier><identifier>EISBN: 9780769537184</identifier><identifier>DOI: 10.1109/AVSS.2009.8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive signal detection ; Computer vision ; Covariance matrix ; descriptors ; Detectors ; feature normalization ; Lakes ; Layout ; local image features ; Shape ; shape estimation ; Signal processing ; Surveillance ; Transmission line matrix methods</subject><ispartof>2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, 2009, p.496-501</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5279937$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5279937$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lakemond, R.</creatorcontrib><creatorcontrib>Fookes, C.</creatorcontrib><creatorcontrib>Sridharan, S.</creatorcontrib><title>Affine Adaptation of Local Image Features Using the Hessian Matrix</title><title>2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance</title><addtitle>AVSS</addtitle><description>Local feature detectors that make use of derivative based saliency functions to locate points of interest typically require adaptation processes after initial detection in order to achieve scale and affine covariance. Affine adaptation methods have previously been proposed that make use of the second moment matrix to iteratively estimate the affine shape of local image regions. This paper shows that it is possible to use the Hessian matrix to estimate local affine shape in a similar fashion to the second moment matrix. The Hessian matrix requires significantly less computation effort to compute than the second moment matrix, allowing more efficient affine adaptation. It may also be more convenient to use the Hessian matrix, for example, when the Determinant of Hessian detector is used. Experimental evaluation shows that the Hessian matrix is very effective in increasing the efficiency of blob detectors such as the Determinant of Hessian detector, but less effective in combination with the Harris corner detector.</description><subject>Adaptive signal detection</subject><subject>Computer vision</subject><subject>Covariance matrix</subject><subject>descriptors</subject><subject>Detectors</subject><subject>feature normalization</subject><subject>Lakes</subject><subject>Layout</subject><subject>local image features</subject><subject>Shape</subject><subject>shape estimation</subject><subject>Signal processing</subject><subject>Surveillance</subject><subject>Transmission line matrix methods</subject><isbn>9781424447558</isbn><isbn>1424447550</isbn><isbn>0769537189</isbn><isbn>9780769537184</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjrtOwzAUQI0QElAyMbL4BxL8foyhorRSEEMpa3VbXxejNqliI8HfUwRnOdvRIeSWs4Zz5u_bt-WyEYz5xp2Ra2aN19Jy589J5a3jSiilrNbuklQ5f7ATSgvn7RV5aGNMPdI2wLFASUNPh0i7YQt7ujjADukMoXyOmOkqp35HyzvSOeacoKfPUMb0dUMuIuwzVv-ekNXs8XU6r7uXp8W07erErS41RKcMcGmEdzoECJFpLYLyDiVKa-XGbdkGVQjmd50LpgwDiFqeXtFIOSF3f92EiOvjmA4wfq-1sN5LK38AkjtImQ</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Lakemond, R.</creator><creator>Fookes, C.</creator><creator>Sridharan, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>Affine Adaptation of Local Image Features Using the Hessian Matrix</title><author>Lakemond, R. ; Fookes, C. ; Sridharan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-af846a1362985ddadf0552d498e3e3773b8c0be4dd67189120460aaf53452e633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive signal detection</topic><topic>Computer vision</topic><topic>Covariance matrix</topic><topic>descriptors</topic><topic>Detectors</topic><topic>feature normalization</topic><topic>Lakes</topic><topic>Layout</topic><topic>local image features</topic><topic>Shape</topic><topic>shape estimation</topic><topic>Signal processing</topic><topic>Surveillance</topic><topic>Transmission line matrix methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Lakemond, R.</creatorcontrib><creatorcontrib>Fookes, C.</creatorcontrib><creatorcontrib>Sridharan, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lakemond, R.</au><au>Fookes, C.</au><au>Sridharan, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Affine Adaptation of Local Image Features Using the Hessian Matrix</atitle><btitle>2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance</btitle><stitle>AVSS</stitle><date>2009-09</date><risdate>2009</risdate><spage>496</spage><epage>501</epage><pages>496-501</pages><isbn>9781424447558</isbn><isbn>1424447550</isbn><eisbn>0769537189</eisbn><eisbn>9780769537184</eisbn><abstract>Local feature detectors that make use of derivative based saliency functions to locate points of interest typically require adaptation processes after initial detection in order to achieve scale and affine covariance. Affine adaptation methods have previously been proposed that make use of the second moment matrix to iteratively estimate the affine shape of local image regions. This paper shows that it is possible to use the Hessian matrix to estimate local affine shape in a similar fashion to the second moment matrix. The Hessian matrix requires significantly less computation effort to compute than the second moment matrix, allowing more efficient affine adaptation. It may also be more convenient to use the Hessian matrix, for example, when the Determinant of Hessian detector is used. Experimental evaluation shows that the Hessian matrix is very effective in increasing the efficiency of blob detectors such as the Determinant of Hessian detector, but less effective in combination with the Harris corner detector.</abstract><pub>IEEE</pub><doi>10.1109/AVSS.2009.8</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424447558 |
ispartof | 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, 2009, p.496-501 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5279937 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive signal detection Computer vision Covariance matrix descriptors Detectors feature normalization Lakes Layout local image features Shape shape estimation Signal processing Surveillance Transmission line matrix methods |
title | Affine Adaptation of Local Image Features Using the Hessian Matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T23%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Affine%20Adaptation%20of%20Local%20Image%20Features%20Using%20the%20Hessian%20Matrix&rft.btitle=2009%20Sixth%20IEEE%20International%20Conference%20on%20Advanced%20Video%20and%20Signal%20Based%20Surveillance&rft.au=Lakemond,%20R.&rft.date=2009-09&rft.spage=496&rft.epage=501&rft.pages=496-501&rft.isbn=9781424447558&rft.isbn_list=1424447550&rft_id=info:doi/10.1109/AVSS.2009.8&rft_dat=%3Cieee_6IE%3E5279937%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769537189&rft.eisbn_list=9780769537184&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5279937&rfr_iscdi=true |