Language Model Integration for the Recognition of Handwritten Medieval Documents

Building recognition systems for historical documents is a difficult task. Especially, when it comes to medieval scripts. The complexity is mainly affected by the poor quality and the small quantity of the data available. In this paper we apply an HMM based recognition system to medieval manuscripts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wuthrich, M., Liwicki, M., Fischer, A., Indermuhle, E., Bunke, H., Viehhauser, G., Stolz, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue
container_start_page 211
container_title
container_volume
creator Wuthrich, M.
Liwicki, M.
Fischer, A.
Indermuhle, E.
Bunke, H.
Viehhauser, G.
Stolz, M.
description Building recognition systems for historical documents is a difficult task. Especially, when it comes to medieval scripts. The complexity is mainly affected by the poor quality and the small quantity of the data available. In this paper we apply an HMM based recognition system to medieval manuscripts from the 13th century written in Middle High German. The recognition system, which was originally developed for modern scripts, has been adapted to medieval scripts. Beside the data processing, one of the major challenges is to create a suitable language model. Because of the lack of appropriate independent text corpora for medieval languages, the language model has to be created on the base of a rather small number of manuscripts only. Due to the small size of the corpus, optimizing the language model parameters can quickly lead to the problem of overfitting. In this paper we describe a strategy to integrate all available information into the language model and to optimize the language model parameters without suffering from this problem.
doi_str_mv 10.1109/ICDAR.2009.17
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5277727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5277727</ieee_id><sourcerecordid>5277727</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-dea316258dafe25096c5a3c892b698cc87fa5c4b04dfbdc3f8828ff0e181fb8f3</originalsourceid><addsrcrecordid>eNotzMtOAjEUgOF6SwRk6cpNX2Dw9DZtlwQvkEA0hD3ptKdjDXTMTNH49ibq6k--xU_ILYMZY2DvV4uH-XbGAeyM6TMytdqArq0Smit-TkZcaFtxJuGCjJnkUkoFAJdkxBSHSolaXJPxMLwDMGttPSKva5fbk2uRbrqAB7rKBdveldRlGrueljekW_Rdm9OvdZEuXQ5ffSoFM91gSPjpDvSh86cj5jLckKvoDgNO_zshu6fH3WJZrV-eV4v5ukoWShXQCVZzZYKLyBXY2isnvLG8qa3x3ujolJcNyBCb4EU0hpsYAZlhsTFRTMjd3zYh4v6jT0fXf-8V11pzLX4AG1tTaw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Language Model Integration for the Recognition of Handwritten Medieval Documents</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wuthrich, M. ; Liwicki, M. ; Fischer, A. ; Indermuhle, E. ; Bunke, H. ; Viehhauser, G. ; Stolz, M.</creator><creatorcontrib>Wuthrich, M. ; Liwicki, M. ; Fischer, A. ; Indermuhle, E. ; Bunke, H. ; Viehhauser, G. ; Stolz, M.</creatorcontrib><description>Building recognition systems for historical documents is a difficult task. Especially, when it comes to medieval scripts. The complexity is mainly affected by the poor quality and the small quantity of the data available. In this paper we apply an HMM based recognition system to medieval manuscripts from the 13th century written in Middle High German. The recognition system, which was originally developed for modern scripts, has been adapted to medieval scripts. Beside the data processing, one of the major challenges is to create a suitable language model. Because of the lack of appropriate independent text corpora for medieval languages, the language model has to be created on the base of a rather small number of manuscripts only. Due to the small size of the corpus, optimizing the language model parameters can quickly lead to the problem of overfitting. In this paper we describe a strategy to integrate all available information into the language model and to optimize the language model parameters without suffering from this problem.</description><identifier>ISSN: 1520-5363</identifier><identifier>ISBN: 1424445000</identifier><identifier>ISBN: 9781424445004</identifier><identifier>EISSN: 2379-2140</identifier><identifier>EISBN: 9780769537252</identifier><identifier>EISBN: 0769537251</identifier><identifier>DOI: 10.1109/ICDAR.2009.17</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Data processing ; Digital images ; Handwriting recognition ; Hidden Markov models ; Historical Documents ; HMM ; Language Model ; Mathematics ; Natural languages ; Overfitting ; Software libraries ; Text analysis ; Writing</subject><ispartof>2009 10th International Conference on Document Analysis and Recognition, 2009, p.211-215</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5277727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5277727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wuthrich, M.</creatorcontrib><creatorcontrib>Liwicki, M.</creatorcontrib><creatorcontrib>Fischer, A.</creatorcontrib><creatorcontrib>Indermuhle, E.</creatorcontrib><creatorcontrib>Bunke, H.</creatorcontrib><creatorcontrib>Viehhauser, G.</creatorcontrib><creatorcontrib>Stolz, M.</creatorcontrib><title>Language Model Integration for the Recognition of Handwritten Medieval Documents</title><title>2009 10th International Conference on Document Analysis and Recognition</title><addtitle>ICDAR</addtitle><description>Building recognition systems for historical documents is a difficult task. Especially, when it comes to medieval scripts. The complexity is mainly affected by the poor quality and the small quantity of the data available. In this paper we apply an HMM based recognition system to medieval manuscripts from the 13th century written in Middle High German. The recognition system, which was originally developed for modern scripts, has been adapted to medieval scripts. Beside the data processing, one of the major challenges is to create a suitable language model. Because of the lack of appropriate independent text corpora for medieval languages, the language model has to be created on the base of a rather small number of manuscripts only. Due to the small size of the corpus, optimizing the language model parameters can quickly lead to the problem of overfitting. In this paper we describe a strategy to integrate all available information into the language model and to optimize the language model parameters without suffering from this problem.</description><subject>Computer science</subject><subject>Data processing</subject><subject>Digital images</subject><subject>Handwriting recognition</subject><subject>Hidden Markov models</subject><subject>Historical Documents</subject><subject>HMM</subject><subject>Language Model</subject><subject>Mathematics</subject><subject>Natural languages</subject><subject>Overfitting</subject><subject>Software libraries</subject><subject>Text analysis</subject><subject>Writing</subject><issn>1520-5363</issn><issn>2379-2140</issn><isbn>1424445000</isbn><isbn>9781424445004</isbn><isbn>9780769537252</isbn><isbn>0769537251</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzMtOAjEUgOF6SwRk6cpNX2Dw9DZtlwQvkEA0hD3ptKdjDXTMTNH49ibq6k--xU_ILYMZY2DvV4uH-XbGAeyM6TMytdqArq0Smit-TkZcaFtxJuGCjJnkUkoFAJdkxBSHSolaXJPxMLwDMGttPSKva5fbk2uRbrqAB7rKBdveldRlGrueljekW_Rdm9OvdZEuXQ5ffSoFM91gSPjpDvSh86cj5jLckKvoDgNO_zshu6fH3WJZrV-eV4v5ukoWShXQCVZzZYKLyBXY2isnvLG8qa3x3ujolJcNyBCb4EU0hpsYAZlhsTFRTMjd3zYh4v6jT0fXf-8V11pzLX4AG1tTaw</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Wuthrich, M.</creator><creator>Liwicki, M.</creator><creator>Fischer, A.</creator><creator>Indermuhle, E.</creator><creator>Bunke, H.</creator><creator>Viehhauser, G.</creator><creator>Stolz, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>Language Model Integration for the Recognition of Handwritten Medieval Documents</title><author>Wuthrich, M. ; Liwicki, M. ; Fischer, A. ; Indermuhle, E. ; Bunke, H. ; Viehhauser, G. ; Stolz, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-dea316258dafe25096c5a3c892b698cc87fa5c4b04dfbdc3f8828ff0e181fb8f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer science</topic><topic>Data processing</topic><topic>Digital images</topic><topic>Handwriting recognition</topic><topic>Hidden Markov models</topic><topic>Historical Documents</topic><topic>HMM</topic><topic>Language Model</topic><topic>Mathematics</topic><topic>Natural languages</topic><topic>Overfitting</topic><topic>Software libraries</topic><topic>Text analysis</topic><topic>Writing</topic><toplevel>online_resources</toplevel><creatorcontrib>Wuthrich, M.</creatorcontrib><creatorcontrib>Liwicki, M.</creatorcontrib><creatorcontrib>Fischer, A.</creatorcontrib><creatorcontrib>Indermuhle, E.</creatorcontrib><creatorcontrib>Bunke, H.</creatorcontrib><creatorcontrib>Viehhauser, G.</creatorcontrib><creatorcontrib>Stolz, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wuthrich, M.</au><au>Liwicki, M.</au><au>Fischer, A.</au><au>Indermuhle, E.</au><au>Bunke, H.</au><au>Viehhauser, G.</au><au>Stolz, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Language Model Integration for the Recognition of Handwritten Medieval Documents</atitle><btitle>2009 10th International Conference on Document Analysis and Recognition</btitle><stitle>ICDAR</stitle><date>2009-07</date><risdate>2009</risdate><spage>211</spage><epage>215</epage><pages>211-215</pages><issn>1520-5363</issn><eissn>2379-2140</eissn><isbn>1424445000</isbn><isbn>9781424445004</isbn><eisbn>9780769537252</eisbn><eisbn>0769537251</eisbn><abstract>Building recognition systems for historical documents is a difficult task. Especially, when it comes to medieval scripts. The complexity is mainly affected by the poor quality and the small quantity of the data available. In this paper we apply an HMM based recognition system to medieval manuscripts from the 13th century written in Middle High German. The recognition system, which was originally developed for modern scripts, has been adapted to medieval scripts. Beside the data processing, one of the major challenges is to create a suitable language model. Because of the lack of appropriate independent text corpora for medieval languages, the language model has to be created on the base of a rather small number of manuscripts only. Due to the small size of the corpus, optimizing the language model parameters can quickly lead to the problem of overfitting. In this paper we describe a strategy to integrate all available information into the language model and to optimize the language model parameters without suffering from this problem.</abstract><pub>IEEE</pub><doi>10.1109/ICDAR.2009.17</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-5363
ispartof 2009 10th International Conference on Document Analysis and Recognition, 2009, p.211-215
issn 1520-5363
2379-2140
language eng
recordid cdi_ieee_primary_5277727
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Data processing
Digital images
Handwriting recognition
Hidden Markov models
Historical Documents
HMM
Language Model
Mathematics
Natural languages
Overfitting
Software libraries
Text analysis
Writing
title Language Model Integration for the Recognition of Handwritten Medieval Documents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Language%20Model%20Integration%20for%20the%20Recognition%20of%20Handwritten%20Medieval%20Documents&rft.btitle=2009%2010th%20International%20Conference%20on%20Document%20Analysis%20and%20Recognition&rft.au=Wuthrich,%20M.&rft.date=2009-07&rft.spage=211&rft.epage=215&rft.pages=211-215&rft.issn=1520-5363&rft.eissn=2379-2140&rft.isbn=1424445000&rft.isbn_list=9781424445004&rft_id=info:doi/10.1109/ICDAR.2009.17&rft_dat=%3Cieee_6IE%3E5277727%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769537252&rft.eisbn_list=0769537251&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5277727&rfr_iscdi=true