Generation of polyline reference sets on quantized supports

A key step in fuzzy relational modeling is the generation of appropriate reference sets. The membership functions used to define these reference sets are often based on heuristics. However, more attention must be paid to how these reference sets are created if the actual statistical characteristics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lapohos, T., Knopf, G.K., Buchal, R.O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 494
container_issue
container_start_page 489
container_title
container_volume
creator Lapohos, T.
Knopf, G.K.
Buchal, R.O.
description A key step in fuzzy relational modeling is the generation of appropriate reference sets. The membership functions used to define these reference sets are often based on heuristics. However, more attention must be paid to how these reference sets are created if the actual statistical characteristics of the system signals are to be reflected in the shape of the membership functions. A new algorithm which automatically generates reference sets without neglecting important information hidden in the data statistics is described in this paper. The method employs a Scalar Quantization (SQ) algorithm to partition the universe of discourse, and a parametric polyline technique to generate the membership functions on the partitioned universe. The performance of the reference set generator algorithm is analyzed by modeling and simulating a stochastic process.
doi_str_mv 10.1109/ISUMA.1995.527743
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_527743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>527743</ieee_id><sourcerecordid>527743</sourcerecordid><originalsourceid>FETCH-ieee_primary_5277433</originalsourceid><addsrcrecordid>eNp9jrsKwjAUQAMi-OoH6JQfsCZN27Q4ifganNS5BL2FSE1ibjrUr1fQ2bOc4SyHkClnMeesXBxOl-Mq5mWZxVkiZSp6ZMQKXuSSJ3kyIBHinX1IRV5IMSTLHRjwKmhrqK2ps03XaAPUQw0ezBUoQkD6qc9WmaBfcKPYOmd9wAnp16pBiH4ek9l2c17v5xoAKuf1Q_mu-m6Iv_ENdRc3cA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generation of polyline reference sets on quantized supports</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lapohos, T. ; Knopf, G.K. ; Buchal, R.O.</creator><creatorcontrib>Lapohos, T. ; Knopf, G.K. ; Buchal, R.O.</creatorcontrib><description>A key step in fuzzy relational modeling is the generation of appropriate reference sets. The membership functions used to define these reference sets are often based on heuristics. However, more attention must be paid to how these reference sets are created if the actual statistical characteristics of the system signals are to be reflected in the shape of the membership functions. A new algorithm which automatically generates reference sets without neglecting important information hidden in the data statistics is described in this paper. The method employs a Scalar Quantization (SQ) algorithm to partition the universe of discourse, and a parametric polyline technique to generate the membership functions on the partitioned universe. The performance of the reference set generator algorithm is analyzed by modeling and simulating a stochastic process.</description><identifier>ISBN: 0818671262</identifier><identifier>ISBN: 9780818671265</identifier><identifier>DOI: 10.1109/ISUMA.1995.527743</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Fuzzy logic ; Fuzzy sets ; Fuzzy systems ; Laboratories ; Mechanical engineering ; Mechatronics ; Parametric statistics ; Partitioning algorithms ; Shape</subject><ispartof>Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society, 1995, p.489-494</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/527743$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/527743$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lapohos, T.</creatorcontrib><creatorcontrib>Knopf, G.K.</creatorcontrib><creatorcontrib>Buchal, R.O.</creatorcontrib><title>Generation of polyline reference sets on quantized supports</title><title>Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society</title><addtitle>ISUMA</addtitle><description>A key step in fuzzy relational modeling is the generation of appropriate reference sets. The membership functions used to define these reference sets are often based on heuristics. However, more attention must be paid to how these reference sets are created if the actual statistical characteristics of the system signals are to be reflected in the shape of the membership functions. A new algorithm which automatically generates reference sets without neglecting important information hidden in the data statistics is described in this paper. The method employs a Scalar Quantization (SQ) algorithm to partition the universe of discourse, and a parametric polyline technique to generate the membership functions on the partitioned universe. The performance of the reference set generator algorithm is analyzed by modeling and simulating a stochastic process.</description><subject>Algorithm design and analysis</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Laboratories</subject><subject>Mechanical engineering</subject><subject>Mechatronics</subject><subject>Parametric statistics</subject><subject>Partitioning algorithms</subject><subject>Shape</subject><isbn>0818671262</isbn><isbn>9780818671265</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jrsKwjAUQAMi-OoH6JQfsCZN27Q4ifganNS5BL2FSE1ibjrUr1fQ2bOc4SyHkClnMeesXBxOl-Mq5mWZxVkiZSp6ZMQKXuSSJ3kyIBHinX1IRV5IMSTLHRjwKmhrqK2ps03XaAPUQw0ezBUoQkD6qc9WmaBfcKPYOmd9wAnp16pBiH4ek9l2c17v5xoAKuf1Q_mu-m6Iv_ENdRc3cA</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Lapohos, T.</creator><creator>Knopf, G.K.</creator><creator>Buchal, R.O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Generation of polyline reference sets on quantized supports</title><author>Lapohos, T. ; Knopf, G.K. ; Buchal, R.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_5277433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithm design and analysis</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Laboratories</topic><topic>Mechanical engineering</topic><topic>Mechatronics</topic><topic>Parametric statistics</topic><topic>Partitioning algorithms</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Lapohos, T.</creatorcontrib><creatorcontrib>Knopf, G.K.</creatorcontrib><creatorcontrib>Buchal, R.O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lapohos, T.</au><au>Knopf, G.K.</au><au>Buchal, R.O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generation of polyline reference sets on quantized supports</atitle><btitle>Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society</btitle><stitle>ISUMA</stitle><date>1995</date><risdate>1995</risdate><spage>489</spage><epage>494</epage><pages>489-494</pages><isbn>0818671262</isbn><isbn>9780818671265</isbn><abstract>A key step in fuzzy relational modeling is the generation of appropriate reference sets. The membership functions used to define these reference sets are often based on heuristics. However, more attention must be paid to how these reference sets are created if the actual statistical characteristics of the system signals are to be reflected in the shape of the membership functions. A new algorithm which automatically generates reference sets without neglecting important information hidden in the data statistics is described in this paper. The method employs a Scalar Quantization (SQ) algorithm to partition the universe of discourse, and a parametric polyline technique to generate the membership functions on the partitioned universe. The performance of the reference set generator algorithm is analyzed by modeling and simulating a stochastic process.</abstract><pub>IEEE</pub><doi>10.1109/ISUMA.1995.527743</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0818671262
ispartof Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society, 1995, p.489-494
issn
language eng
recordid cdi_ieee_primary_527743
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Fuzzy logic
Fuzzy sets
Fuzzy systems
Laboratories
Mechanical engineering
Mechatronics
Parametric statistics
Partitioning algorithms
Shape
title Generation of polyline reference sets on quantized supports
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generation%20of%20polyline%20reference%20sets%20on%20quantized%20supports&rft.btitle=Proceedings%20of%203rd%20International%20Symposium%20on%20Uncertainty%20Modeling%20and%20Analysis%20and%20Annual%20Conference%20of%20the%20North%20American%20Fuzzy%20Information%20Processing%20Society&rft.au=Lapohos,%20T.&rft.date=1995&rft.spage=489&rft.epage=494&rft.pages=489-494&rft.isbn=0818671262&rft.isbn_list=9780818671265&rft_id=info:doi/10.1109/ISUMA.1995.527743&rft_dat=%3Cieee_6IE%3E527743%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=527743&rfr_iscdi=true