Design of interval type-2 fuzzy neural networks and their optimization using real-coded genetic algorithms

In this paper, we introduce the design methodology of interval type-2 fuzzy neural networks (IT2FNN). And to optimize the network we use a real-coded genetic algorithm. IT2FNN is the network of combination between the fuzzy neural network (FNN) and interval type-2 fuzzy set with uncertainty. The ant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Keon-Jun Park, Sung-Kwun Oh, Pedrycz, W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2018
container_issue
container_start_page 2013
container_title
container_volume
creator Keon-Jun Park
Sung-Kwun Oh
Pedrycz, W.
description In this paper, we introduce the design methodology of interval type-2 fuzzy neural networks (IT2FNN). And to optimize the network we use a real-coded genetic algorithm. IT2FNN is the network of combination between the fuzzy neural network (FNN) and interval type-2 fuzzy set with uncertainty. The antecedent part of the network is composed of the fuzzy division of input space and the consequence part of the network is represented by polynomial functions. The parameters such as the apexes of membership function, uncertainty parameter, the learning rate and the momentum coefficient are optimized using genetic algorithm (GA). The proposed network is evaluated with the performance between the approximation and the generalization abilities.
doi_str_mv 10.1109/FUZZY.2009.5277365
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5277365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5277365</ieee_id><sourcerecordid>5277365</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-940453f19c0314a8c53079a1a8a2d4842dfff4008313a80cbee5ad1a5a225f5e3</originalsourceid><addsrcrecordid>eNpVUE1PAjEUrFETCfIH9NI_sNhP2h4NipqQeJGDXMhz93UpLl3SLRr49a6Ri3OZvElmMm8IueFszDlzd7PFcvk-Foy5sRbGyIk-IyNnLFdCKamd0ef_7om9IIPeaAujrboio67bsB5KSy75gGwesAt1pK2nIWZMX9DQfNhhIajfH48HGnGfei1i_m7TZ0chVjSvMSTa7nLYhiPk0Ea670KsaUJoirKtsKI19pZQUmjqNoW83nbX5NJD0-HoxEOymD2-TZ-L-evTy_R-XgRudC6c-i3nuSuZ5ApsqSUzDjhYEJWySlTee8WY7R8Ay8oPRA0VBw1CaK9RDsntX25AxNUuhS2kw-q0lvwBn1pdaA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design of interval type-2 fuzzy neural networks and their optimization using real-coded genetic algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Keon-Jun Park ; Sung-Kwun Oh ; Pedrycz, W.</creator><creatorcontrib>Keon-Jun Park ; Sung-Kwun Oh ; Pedrycz, W.</creatorcontrib><description>In this paper, we introduce the design methodology of interval type-2 fuzzy neural networks (IT2FNN). And to optimize the network we use a real-coded genetic algorithm. IT2FNN is the network of combination between the fuzzy neural network (FNN) and interval type-2 fuzzy set with uncertainty. The antecedent part of the network is composed of the fuzzy division of input space and the consequence part of the network is represented by polynomial functions. The parameters such as the apexes of membership function, uncertainty parameter, the learning rate and the momentum coefficient are optimized using genetic algorithm (GA). The proposed network is evaluated with the performance between the approximation and the generalization abilities.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 9781424435968</identifier><identifier>ISBN: 142443596X</identifier><identifier>EISBN: 9781424435975</identifier><identifier>EISBN: 1424435978</identifier><identifier>DOI: 10.1109/FUZZY.2009.5277365</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Design optimization ; Fuzzy neural networks ; Fuzzy sets ; Genetic algorithms ; Inference algorithms ; Neural networks ; Polynomials ; Uncertainty ; Working environment noise</subject><ispartof>2009 IEEE International Conference on Fuzzy Systems, 2009, p.2013-2018</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5277365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5277365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Keon-Jun Park</creatorcontrib><creatorcontrib>Sung-Kwun Oh</creatorcontrib><creatorcontrib>Pedrycz, W.</creatorcontrib><title>Design of interval type-2 fuzzy neural networks and their optimization using real-coded genetic algorithms</title><title>2009 IEEE International Conference on Fuzzy Systems</title><addtitle>FUZZY</addtitle><description>In this paper, we introduce the design methodology of interval type-2 fuzzy neural networks (IT2FNN). And to optimize the network we use a real-coded genetic algorithm. IT2FNN is the network of combination between the fuzzy neural network (FNN) and interval type-2 fuzzy set with uncertainty. The antecedent part of the network is composed of the fuzzy division of input space and the consequence part of the network is represented by polynomial functions. The parameters such as the apexes of membership function, uncertainty parameter, the learning rate and the momentum coefficient are optimized using genetic algorithm (GA). The proposed network is evaluated with the performance between the approximation and the generalization abilities.</description><subject>Algorithm design and analysis</subject><subject>Design optimization</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy sets</subject><subject>Genetic algorithms</subject><subject>Inference algorithms</subject><subject>Neural networks</subject><subject>Polynomials</subject><subject>Uncertainty</subject><subject>Working environment noise</subject><issn>1098-7584</issn><isbn>9781424435968</isbn><isbn>142443596X</isbn><isbn>9781424435975</isbn><isbn>1424435978</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUE1PAjEUrFETCfIH9NI_sNhP2h4NipqQeJGDXMhz93UpLl3SLRr49a6Ri3OZvElmMm8IueFszDlzd7PFcvk-Foy5sRbGyIk-IyNnLFdCKamd0ef_7om9IIPeaAujrboio67bsB5KSy75gGwesAt1pK2nIWZMX9DQfNhhIajfH48HGnGfei1i_m7TZ0chVjSvMSTa7nLYhiPk0Ea670KsaUJoirKtsKI19pZQUmjqNoW83nbX5NJD0-HoxEOymD2-TZ-L-evTy_R-XgRudC6c-i3nuSuZ5ApsqSUzDjhYEJWySlTee8WY7R8Ay8oPRA0VBw1CaK9RDsntX25AxNUuhS2kw-q0lvwBn1pdaA</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Keon-Jun Park</creator><creator>Sung-Kwun Oh</creator><creator>Pedrycz, W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200908</creationdate><title>Design of interval type-2 fuzzy neural networks and their optimization using real-coded genetic algorithms</title><author>Keon-Jun Park ; Sung-Kwun Oh ; Pedrycz, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-940453f19c0314a8c53079a1a8a2d4842dfff4008313a80cbee5ad1a5a225f5e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Design optimization</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy sets</topic><topic>Genetic algorithms</topic><topic>Inference algorithms</topic><topic>Neural networks</topic><topic>Polynomials</topic><topic>Uncertainty</topic><topic>Working environment noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Keon-Jun Park</creatorcontrib><creatorcontrib>Sung-Kwun Oh</creatorcontrib><creatorcontrib>Pedrycz, W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Keon-Jun Park</au><au>Sung-Kwun Oh</au><au>Pedrycz, W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design of interval type-2 fuzzy neural networks and their optimization using real-coded genetic algorithms</atitle><btitle>2009 IEEE International Conference on Fuzzy Systems</btitle><stitle>FUZZY</stitle><date>2009-08</date><risdate>2009</risdate><spage>2013</spage><epage>2018</epage><pages>2013-2018</pages><issn>1098-7584</issn><isbn>9781424435968</isbn><isbn>142443596X</isbn><eisbn>9781424435975</eisbn><eisbn>1424435978</eisbn><abstract>In this paper, we introduce the design methodology of interval type-2 fuzzy neural networks (IT2FNN). And to optimize the network we use a real-coded genetic algorithm. IT2FNN is the network of combination between the fuzzy neural network (FNN) and interval type-2 fuzzy set with uncertainty. The antecedent part of the network is composed of the fuzzy division of input space and the consequence part of the network is represented by polynomial functions. The parameters such as the apexes of membership function, uncertainty parameter, the learning rate and the momentum coefficient are optimized using genetic algorithm (GA). The proposed network is evaluated with the performance between the approximation and the generalization abilities.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.2009.5277365</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7584
ispartof 2009 IEEE International Conference on Fuzzy Systems, 2009, p.2013-2018
issn 1098-7584
language eng
recordid cdi_ieee_primary_5277365
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Design optimization
Fuzzy neural networks
Fuzzy sets
Genetic algorithms
Inference algorithms
Neural networks
Polynomials
Uncertainty
Working environment noise
title Design of interval type-2 fuzzy neural networks and their optimization using real-coded genetic algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20of%20interval%20type-2%20fuzzy%20neural%20networks%20and%20their%20optimization%20using%20real-coded%20genetic%20algorithms&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Fuzzy%20Systems&rft.au=Keon-Jun%20Park&rft.date=2009-08&rft.spage=2013&rft.epage=2018&rft.pages=2013-2018&rft.issn=1098-7584&rft.isbn=9781424435968&rft.isbn_list=142443596X&rft_id=info:doi/10.1109/FUZZY.2009.5277365&rft_dat=%3Cieee_6IE%3E5277365%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424435975&rft.eisbn_list=1424435978&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5277365&rfr_iscdi=true