TSK fuzzy model using kernel-based fuzzy c-means clustering

In order to overcome the dimension problem of the traditional fuzzy clustering, we use kernel-based fuzzy c-means clustering (KFCM) to construct first-order TSK fuzzy models. The proposed algorithm is composed of two phases. In the first phase, the antecedent fuzzy sets are obtained by KFCM. We pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Qianfeng Cai, Wei Liu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312
container_issue
container_start_page 308
container_title
container_volume
creator Qianfeng Cai
Wei Liu
description In order to overcome the dimension problem of the traditional fuzzy clustering, we use kernel-based fuzzy c-means clustering (KFCM) to construct first-order TSK fuzzy models. The proposed algorithm is composed of two phases. In the first phase, the antecedent fuzzy sets are obtained by KFCM. We present the expression of the cluster prototypes of KFCM with different kernel functions in original input space. The use of cluster validity indices is a standard approach to determine an appropriate number of clusters in a data set. However, cluster validity index demands running the clustering algorithm for different number of clusters repeatedly. Therefore, a novel method specifying the number of clusters automatically is given for the purpose of reducing the computational complexity and eliminating the outliers. In the second phase, the consequent parameters can be identified by the least squares method. Experiment results show that the proposed method improves the generalization ability and robustness of fuzzy models compared with the traditional techniques.
doi_str_mv 10.1109/FUZZY.2009.5277146
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5277146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5277146</ieee_id><sourcerecordid>5277146</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-49ad4f430687ada1d5121100508b2665d642db21487950a6c54522b5e50e76683</originalsourceid><addsrcrecordid>eNpVT8tKw0AUHVHBUvMDuskPTJzHvTMTXEmxVSy4sF3YTZlkbiSaRMk0i_brDZiNZ3M4nAccxm6kyKQU-d1yu9u9Z0qIPENlrQRzxpLcOgkKQGNu8fyfNu6Czcai4xYdXLEkxk8xAlBLLWfsfvP2klbD6XRM2-9ATTrEuvtIv6jvqOGFjxQmu-Qt-S6mZTPEA_Vj6ppdVr6JlEw8Z9vl42bxxNevq-fFw5rX0uKBQ-4DVKCFcdYHLwNKNX4RKFyhjMFgQIVCSXA2R-FNiYBKFUgoyBrj9Jzd_u3WRLT_6evW98f9dF__AvlXSfU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>TSK fuzzy model using kernel-based fuzzy c-means clustering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Qianfeng Cai ; Wei Liu</creator><creatorcontrib>Qianfeng Cai ; Wei Liu</creatorcontrib><description>In order to overcome the dimension problem of the traditional fuzzy clustering, we use kernel-based fuzzy c-means clustering (KFCM) to construct first-order TSK fuzzy models. The proposed algorithm is composed of two phases. In the first phase, the antecedent fuzzy sets are obtained by KFCM. We present the expression of the cluster prototypes of KFCM with different kernel functions in original input space. The use of cluster validity indices is a standard approach to determine an appropriate number of clusters in a data set. However, cluster validity index demands running the clustering algorithm for different number of clusters repeatedly. Therefore, a novel method specifying the number of clusters automatically is given for the purpose of reducing the computational complexity and eliminating the outliers. In the second phase, the consequent parameters can be identified by the least squares method. Experiment results show that the proposed method improves the generalization ability and robustness of fuzzy models compared with the traditional techniques.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 9781424435968</identifier><identifier>ISBN: 142443596X</identifier><identifier>EISBN: 9781424435975</identifier><identifier>EISBN: 1424435978</identifier><identifier>DOI: 10.1109/FUZZY.2009.5277146</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Computational complexity ; Fuzzy sets ; Kernel ; Least squares approximation ; Least squares methods ; Polynomials ; Prototypes ; Robustness ; Shape</subject><ispartof>2009 IEEE International Conference on Fuzzy Systems, 2009, p.308-312</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5277146$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5277146$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qianfeng Cai</creatorcontrib><creatorcontrib>Wei Liu</creatorcontrib><title>TSK fuzzy model using kernel-based fuzzy c-means clustering</title><title>2009 IEEE International Conference on Fuzzy Systems</title><addtitle>FUZZY</addtitle><description>In order to overcome the dimension problem of the traditional fuzzy clustering, we use kernel-based fuzzy c-means clustering (KFCM) to construct first-order TSK fuzzy models. The proposed algorithm is composed of two phases. In the first phase, the antecedent fuzzy sets are obtained by KFCM. We present the expression of the cluster prototypes of KFCM with different kernel functions in original input space. The use of cluster validity indices is a standard approach to determine an appropriate number of clusters in a data set. However, cluster validity index demands running the clustering algorithm for different number of clusters repeatedly. Therefore, a novel method specifying the number of clusters automatically is given for the purpose of reducing the computational complexity and eliminating the outliers. In the second phase, the consequent parameters can be identified by the least squares method. Experiment results show that the proposed method improves the generalization ability and robustness of fuzzy models compared with the traditional techniques.</description><subject>Clustering algorithms</subject><subject>Computational complexity</subject><subject>Fuzzy sets</subject><subject>Kernel</subject><subject>Least squares approximation</subject><subject>Least squares methods</subject><subject>Polynomials</subject><subject>Prototypes</subject><subject>Robustness</subject><subject>Shape</subject><issn>1098-7584</issn><isbn>9781424435968</isbn><isbn>142443596X</isbn><isbn>9781424435975</isbn><isbn>1424435978</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVT8tKw0AUHVHBUvMDuskPTJzHvTMTXEmxVSy4sF3YTZlkbiSaRMk0i_brDZiNZ3M4nAccxm6kyKQU-d1yu9u9Z0qIPENlrQRzxpLcOgkKQGNu8fyfNu6Czcai4xYdXLEkxk8xAlBLLWfsfvP2klbD6XRM2-9ATTrEuvtIv6jvqOGFjxQmu-Qt-S6mZTPEA_Vj6ppdVr6JlEw8Z9vl42bxxNevq-fFw5rX0uKBQ-4DVKCFcdYHLwNKNX4RKFyhjMFgQIVCSXA2R-FNiYBKFUgoyBrj9Jzd_u3WRLT_6evW98f9dF__AvlXSfU</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Qianfeng Cai</creator><creator>Wei Liu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200908</creationdate><title>TSK fuzzy model using kernel-based fuzzy c-means clustering</title><author>Qianfeng Cai ; Wei Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-49ad4f430687ada1d5121100508b2665d642db21487950a6c54522b5e50e76683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clustering algorithms</topic><topic>Computational complexity</topic><topic>Fuzzy sets</topic><topic>Kernel</topic><topic>Least squares approximation</topic><topic>Least squares methods</topic><topic>Polynomials</topic><topic>Prototypes</topic><topic>Robustness</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Qianfeng Cai</creatorcontrib><creatorcontrib>Wei Liu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qianfeng Cai</au><au>Wei Liu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>TSK fuzzy model using kernel-based fuzzy c-means clustering</atitle><btitle>2009 IEEE International Conference on Fuzzy Systems</btitle><stitle>FUZZY</stitle><date>2009-08</date><risdate>2009</risdate><spage>308</spage><epage>312</epage><pages>308-312</pages><issn>1098-7584</issn><isbn>9781424435968</isbn><isbn>142443596X</isbn><eisbn>9781424435975</eisbn><eisbn>1424435978</eisbn><abstract>In order to overcome the dimension problem of the traditional fuzzy clustering, we use kernel-based fuzzy c-means clustering (KFCM) to construct first-order TSK fuzzy models. The proposed algorithm is composed of two phases. In the first phase, the antecedent fuzzy sets are obtained by KFCM. We present the expression of the cluster prototypes of KFCM with different kernel functions in original input space. The use of cluster validity indices is a standard approach to determine an appropriate number of clusters in a data set. However, cluster validity index demands running the clustering algorithm for different number of clusters repeatedly. Therefore, a novel method specifying the number of clusters automatically is given for the purpose of reducing the computational complexity and eliminating the outliers. In the second phase, the consequent parameters can be identified by the least squares method. Experiment results show that the proposed method improves the generalization ability and robustness of fuzzy models compared with the traditional techniques.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.2009.5277146</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7584
ispartof 2009 IEEE International Conference on Fuzzy Systems, 2009, p.308-312
issn 1098-7584
language eng
recordid cdi_ieee_primary_5277146
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Computational complexity
Fuzzy sets
Kernel
Least squares approximation
Least squares methods
Polynomials
Prototypes
Robustness
Shape
title TSK fuzzy model using kernel-based fuzzy c-means clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=TSK%20fuzzy%20model%20using%20kernel-based%20fuzzy%20c-means%20clustering&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Fuzzy%20Systems&rft.au=Qianfeng%20Cai&rft.date=2009-08&rft.spage=308&rft.epage=312&rft.pages=308-312&rft.issn=1098-7584&rft.isbn=9781424435968&rft.isbn_list=142443596X&rft_id=info:doi/10.1109/FUZZY.2009.5277146&rft_dat=%3Cieee_6IE%3E5277146%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424435975&rft.eisbn_list=1424435978&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5277146&rfr_iscdi=true