Pattern based object segmentation using split and merge

Split and Merge (SM) algorithm is a well recognized algorithm for segmenting homogeneous regions in an image. Though SM algorithm is simple and easy, this algorithm is unable to segment all type objects in an image successfully due to huge variations among the objects in size, shape, color and inten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karim, Z., Paiker, N.R., Ali, M.A., Sorwar, G., Islam, M.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2169
container_issue
container_start_page 2166
container_title
container_volume
creator Karim, Z.
Paiker, N.R.
Ali, M.A.
Sorwar, G.
Islam, M.M.
description Split and Merge (SM) algorithm is a well recognized algorithm for segmenting homogeneous regions in an image. Though SM algorithm is simple and easy, this algorithm is unable to segment all type objects in an image successfully due to huge variations among the objects in size, shape, color and intensity. Moreover, the SM algorithm is also highly dependent on threshold values used for split and merge stages. Addressing these issues, a new algorithm namely pattern based object segmentation using split and merge (PSM) considering the basic SM algorithm, the region stability, and the patterns for object extraction. The experimental results prove the superior segmentation performance of the PSM algorithm in comparison with the basic SM algorithm, suppressed fuzzy c-means (SFCM), and object based image segmentation using fuzzy clustering (FISG).
doi_str_mv 10.1109/FUZZY.2009.5277064
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5277064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5277064</ieee_id><sourcerecordid>5277064</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8d40f70ef65fecbb6d32fc344622fac984151a848acdb5bddee15052ecceff253</originalsourceid><addsrcrecordid>eNpVj8tKAzEYhSMqWOq8gG7yAjPm9k8ySynWCgVd2IXdlFz-DCmdaZnEhW9vwW48m8O3OB8cQh44azhn3dNys91-NYKxrgGhNWvVFak6bbgSSknoNFz_49bckNl5aGoNRt2RKuc9O0eB5JLPiP6wpeA0UmczBnp0e_SFZuwHHIst6TjS75zGnubTIRVqx0AHnHq8J7fRHjJWl56TzfLlc7Gq1--vb4vndZ24hlKboFjUDGMLEb1zbZAieqlUK0S0vjOKA7dGGeuDAxcCIgcGAr3HGAXIOXn88yZE3J2mNNjpZ3e5Ln8BYxBLdg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Pattern based object segmentation using split and merge</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Karim, Z. ; Paiker, N.R. ; Ali, M.A. ; Sorwar, G. ; Islam, M.M.</creator><creatorcontrib>Karim, Z. ; Paiker, N.R. ; Ali, M.A. ; Sorwar, G. ; Islam, M.M.</creatorcontrib><description>Split and Merge (SM) algorithm is a well recognized algorithm for segmenting homogeneous regions in an image. Though SM algorithm is simple and easy, this algorithm is unable to segment all type objects in an image successfully due to huge variations among the objects in size, shape, color and intensity. Moreover, the SM algorithm is also highly dependent on threshold values used for split and merge stages. Addressing these issues, a new algorithm namely pattern based object segmentation using split and merge (PSM) considering the basic SM algorithm, the region stability, and the patterns for object extraction. The experimental results prove the superior segmentation performance of the PSM algorithm in comparison with the basic SM algorithm, suppressed fuzzy c-means (SFCM), and object based image segmentation using fuzzy clustering (FISG).</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 9781424435968</identifier><identifier>ISBN: 142443596X</identifier><identifier>EISBN: 9781424435975</identifier><identifier>EISBN: 1424435978</identifier><identifier>DOI: 10.1109/FUZZY.2009.5277064</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Computer science ; Image segmentation ; micro-blocks ; Object segmentation ; Pattern matching ; Pixel ; region stability ; Samarium ; Shape ; split-and-merge ; Stability ; Video coding</subject><ispartof>2009 IEEE International Conference on Fuzzy Systems, 2009, p.2166-2169</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5277064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5277064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karim, Z.</creatorcontrib><creatorcontrib>Paiker, N.R.</creatorcontrib><creatorcontrib>Ali, M.A.</creatorcontrib><creatorcontrib>Sorwar, G.</creatorcontrib><creatorcontrib>Islam, M.M.</creatorcontrib><title>Pattern based object segmentation using split and merge</title><title>2009 IEEE International Conference on Fuzzy Systems</title><addtitle>FUZZY</addtitle><description>Split and Merge (SM) algorithm is a well recognized algorithm for segmenting homogeneous regions in an image. Though SM algorithm is simple and easy, this algorithm is unable to segment all type objects in an image successfully due to huge variations among the objects in size, shape, color and intensity. Moreover, the SM algorithm is also highly dependent on threshold values used for split and merge stages. Addressing these issues, a new algorithm namely pattern based object segmentation using split and merge (PSM) considering the basic SM algorithm, the region stability, and the patterns for object extraction. The experimental results prove the superior segmentation performance of the PSM algorithm in comparison with the basic SM algorithm, suppressed fuzzy c-means (SFCM), and object based image segmentation using fuzzy clustering (FISG).</description><subject>Clustering algorithms</subject><subject>Computer science</subject><subject>Image segmentation</subject><subject>micro-blocks</subject><subject>Object segmentation</subject><subject>Pattern matching</subject><subject>Pixel</subject><subject>region stability</subject><subject>Samarium</subject><subject>Shape</subject><subject>split-and-merge</subject><subject>Stability</subject><subject>Video coding</subject><issn>1098-7584</issn><isbn>9781424435968</isbn><isbn>142443596X</isbn><isbn>9781424435975</isbn><isbn>1424435978</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj8tKAzEYhSMqWOq8gG7yAjPm9k8ySynWCgVd2IXdlFz-DCmdaZnEhW9vwW48m8O3OB8cQh44azhn3dNys91-NYKxrgGhNWvVFak6bbgSSknoNFz_49bckNl5aGoNRt2RKuc9O0eB5JLPiP6wpeA0UmczBnp0e_SFZuwHHIst6TjS75zGnubTIRVqx0AHnHq8J7fRHjJWl56TzfLlc7Gq1--vb4vndZ24hlKboFjUDGMLEb1zbZAieqlUK0S0vjOKA7dGGeuDAxcCIgcGAr3HGAXIOXn88yZE3J2mNNjpZ3e5Ln8BYxBLdg</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Karim, Z.</creator><creator>Paiker, N.R.</creator><creator>Ali, M.A.</creator><creator>Sorwar, G.</creator><creator>Islam, M.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200908</creationdate><title>Pattern based object segmentation using split and merge</title><author>Karim, Z. ; Paiker, N.R. ; Ali, M.A. ; Sorwar, G. ; Islam, M.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8d40f70ef65fecbb6d32fc344622fac984151a848acdb5bddee15052ecceff253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clustering algorithms</topic><topic>Computer science</topic><topic>Image segmentation</topic><topic>micro-blocks</topic><topic>Object segmentation</topic><topic>Pattern matching</topic><topic>Pixel</topic><topic>region stability</topic><topic>Samarium</topic><topic>Shape</topic><topic>split-and-merge</topic><topic>Stability</topic><topic>Video coding</topic><toplevel>online_resources</toplevel><creatorcontrib>Karim, Z.</creatorcontrib><creatorcontrib>Paiker, N.R.</creatorcontrib><creatorcontrib>Ali, M.A.</creatorcontrib><creatorcontrib>Sorwar, G.</creatorcontrib><creatorcontrib>Islam, M.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karim, Z.</au><au>Paiker, N.R.</au><au>Ali, M.A.</au><au>Sorwar, G.</au><au>Islam, M.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Pattern based object segmentation using split and merge</atitle><btitle>2009 IEEE International Conference on Fuzzy Systems</btitle><stitle>FUZZY</stitle><date>2009-08</date><risdate>2009</risdate><spage>2166</spage><epage>2169</epage><pages>2166-2169</pages><issn>1098-7584</issn><isbn>9781424435968</isbn><isbn>142443596X</isbn><eisbn>9781424435975</eisbn><eisbn>1424435978</eisbn><abstract>Split and Merge (SM) algorithm is a well recognized algorithm for segmenting homogeneous regions in an image. Though SM algorithm is simple and easy, this algorithm is unable to segment all type objects in an image successfully due to huge variations among the objects in size, shape, color and intensity. Moreover, the SM algorithm is also highly dependent on threshold values used for split and merge stages. Addressing these issues, a new algorithm namely pattern based object segmentation using split and merge (PSM) considering the basic SM algorithm, the region stability, and the patterns for object extraction. The experimental results prove the superior segmentation performance of the PSM algorithm in comparison with the basic SM algorithm, suppressed fuzzy c-means (SFCM), and object based image segmentation using fuzzy clustering (FISG).</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.2009.5277064</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7584
ispartof 2009 IEEE International Conference on Fuzzy Systems, 2009, p.2166-2169
issn 1098-7584
language eng
recordid cdi_ieee_primary_5277064
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Computer science
Image segmentation
micro-blocks
Object segmentation
Pattern matching
Pixel
region stability
Samarium
Shape
split-and-merge
Stability
Video coding
title Pattern based object segmentation using split and merge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Pattern%20based%20object%20segmentation%20using%20split%20and%20merge&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Fuzzy%20Systems&rft.au=Karim,%20Z.&rft.date=2009-08&rft.spage=2166&rft.epage=2169&rft.pages=2166-2169&rft.issn=1098-7584&rft.isbn=9781424435968&rft.isbn_list=142443596X&rft_id=info:doi/10.1109/FUZZY.2009.5277064&rft_dat=%3Cieee_6IE%3E5277064%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424435975&rft.eisbn_list=1424435978&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5277064&rfr_iscdi=true