Finding input sub-spaces for Polymorphic Fuzzy Signatures

A significant feature of fuzzy signatures is its applicability for complex and sparse data. To create polymorphic fuzzy signatures (PFS) for sparse data, sparse input sub-spaces (ISSs) should be considered. Finding the optimal ISSs manually is not a simple task as it is time consuming; moreover, som...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hadad, A.H., Gedeon, T.D., Mendis, B.S.U.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1094
container_issue
container_start_page 1089
container_title
container_volume
creator Hadad, A.H.
Gedeon, T.D.
Mendis, B.S.U.
description A significant feature of fuzzy signatures is its applicability for complex and sparse data. To create polymorphic fuzzy signatures (PFS) for sparse data, sparse input sub-spaces (ISSs) should be considered. Finding the optimal ISSs manually is not a simple task as it is time consuming; moreover, some knowledge about the dataset is necessary. Fuzzy c-means (FCM) clustering employed with a trapezoidal approximation method is needed to find ISSs automatically. Furthermore, dealing with sparse data, we should be mindful about choosing a reliable trapezoidal approximation method. This facilitates the optimal ISS creation for the data. In our experiment, two trapezoidal approximation methods were used to find optimal ISSs. The results demonstrate that our version of trapezoidal approximation for creating ISSs result in an PFS with lower mean square error compared to the original trapezoidal approximation method.
doi_str_mv 10.1109/FUZZY.2009.5277055
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5277055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5277055</ieee_id><sourcerecordid>5277055</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-363be749e13aee7b4ea5cbf77c4ee47ee2a720cd487ce3418f2dcf5c8a2bf97b3</originalsourceid><addsrcrecordid>eNpVj81Kw0AUhUdUsNS8gG7yAonz2zuzlGJUKChoF3ZTZiZ36kibhEyySJ_egt14NodvcT44hNwxWjJGzUO13my-Sk6pKRUHoEpdkMyAZpJLKZQBdfmPF_qKzE5DXYDS8oZkKf3QU6QSTLAZMVVs6tjs8th045Cn0RWpsx5THto-f2_306Htu-_o82o8Hqf8I-4aO4w9pltyHew-YXbuOVlXT5_Ll2L19vy6fFwVkTMzFGIhHII0yIRFBCfRKu8CgJeIEhC5BU59LTV4FJLpwGsflNeWu2DAiTm5__NGRNx2fTzYftqez4tfNbJMgQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Finding input sub-spaces for Polymorphic Fuzzy Signatures</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hadad, A.H. ; Gedeon, T.D. ; Mendis, B.S.U.</creator><creatorcontrib>Hadad, A.H. ; Gedeon, T.D. ; Mendis, B.S.U.</creatorcontrib><description>A significant feature of fuzzy signatures is its applicability for complex and sparse data. To create polymorphic fuzzy signatures (PFS) for sparse data, sparse input sub-spaces (ISSs) should be considered. Finding the optimal ISSs manually is not a simple task as it is time consuming; moreover, some knowledge about the dataset is necessary. Fuzzy c-means (FCM) clustering employed with a trapezoidal approximation method is needed to find ISSs automatically. Furthermore, dealing with sparse data, we should be mindful about choosing a reliable trapezoidal approximation method. This facilitates the optimal ISS creation for the data. In our experiment, two trapezoidal approximation methods were used to find optimal ISSs. The results demonstrate that our version of trapezoidal approximation for creating ISSs result in an PFS with lower mean square error compared to the original trapezoidal approximation method.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 9781424435968</identifier><identifier>ISBN: 142443596X</identifier><identifier>EISBN: 9781424435975</identifier><identifier>EISBN: 1424435978</identifier><identifier>DOI: 10.1109/FUZZY.2009.5277055</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Computer science ; Data mining ; Feedback ; Fellows ; Fuzzy C-Means ; Fuzzy sets ; Fuzzy Signatures ; Input subspace clustering ; Mean square error methods ; Optimization methods ; Polymorphic Fuzzy Signatures ; Remuneration ; Skeleton ; Trapezoidal Approximation ; WRAO</subject><ispartof>2009 IEEE International Conference on Fuzzy Systems, 2009, p.1089-1094</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5277055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5277055$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hadad, A.H.</creatorcontrib><creatorcontrib>Gedeon, T.D.</creatorcontrib><creatorcontrib>Mendis, B.S.U.</creatorcontrib><title>Finding input sub-spaces for Polymorphic Fuzzy Signatures</title><title>2009 IEEE International Conference on Fuzzy Systems</title><addtitle>FUZZY</addtitle><description>A significant feature of fuzzy signatures is its applicability for complex and sparse data. To create polymorphic fuzzy signatures (PFS) for sparse data, sparse input sub-spaces (ISSs) should be considered. Finding the optimal ISSs manually is not a simple task as it is time consuming; moreover, some knowledge about the dataset is necessary. Fuzzy c-means (FCM) clustering employed with a trapezoidal approximation method is needed to find ISSs automatically. Furthermore, dealing with sparse data, we should be mindful about choosing a reliable trapezoidal approximation method. This facilitates the optimal ISS creation for the data. In our experiment, two trapezoidal approximation methods were used to find optimal ISSs. The results demonstrate that our version of trapezoidal approximation for creating ISSs result in an PFS with lower mean square error compared to the original trapezoidal approximation method.</description><subject>Approximation methods</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Feedback</subject><subject>Fellows</subject><subject>Fuzzy C-Means</subject><subject>Fuzzy sets</subject><subject>Fuzzy Signatures</subject><subject>Input subspace clustering</subject><subject>Mean square error methods</subject><subject>Optimization methods</subject><subject>Polymorphic Fuzzy Signatures</subject><subject>Remuneration</subject><subject>Skeleton</subject><subject>Trapezoidal Approximation</subject><subject>WRAO</subject><issn>1098-7584</issn><isbn>9781424435968</isbn><isbn>142443596X</isbn><isbn>9781424435975</isbn><isbn>1424435978</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81Kw0AUhUdUsNS8gG7yAonz2zuzlGJUKChoF3ZTZiZ36kibhEyySJ_egt14NodvcT44hNwxWjJGzUO13my-Sk6pKRUHoEpdkMyAZpJLKZQBdfmPF_qKzE5DXYDS8oZkKf3QU6QSTLAZMVVs6tjs8th045Cn0RWpsx5THto-f2_306Htu-_o82o8Hqf8I-4aO4w9pltyHew-YXbuOVlXT5_Ll2L19vy6fFwVkTMzFGIhHII0yIRFBCfRKu8CgJeIEhC5BU59LTV4FJLpwGsflNeWu2DAiTm5__NGRNx2fTzYftqez4tfNbJMgQ</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Hadad, A.H.</creator><creator>Gedeon, T.D.</creator><creator>Mendis, B.S.U.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200908</creationdate><title>Finding input sub-spaces for Polymorphic Fuzzy Signatures</title><author>Hadad, A.H. ; Gedeon, T.D. ; Mendis, B.S.U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-363be749e13aee7b4ea5cbf77c4ee47ee2a720cd487ce3418f2dcf5c8a2bf97b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Approximation methods</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Feedback</topic><topic>Fellows</topic><topic>Fuzzy C-Means</topic><topic>Fuzzy sets</topic><topic>Fuzzy Signatures</topic><topic>Input subspace clustering</topic><topic>Mean square error methods</topic><topic>Optimization methods</topic><topic>Polymorphic Fuzzy Signatures</topic><topic>Remuneration</topic><topic>Skeleton</topic><topic>Trapezoidal Approximation</topic><topic>WRAO</topic><toplevel>online_resources</toplevel><creatorcontrib>Hadad, A.H.</creatorcontrib><creatorcontrib>Gedeon, T.D.</creatorcontrib><creatorcontrib>Mendis, B.S.U.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hadad, A.H.</au><au>Gedeon, T.D.</au><au>Mendis, B.S.U.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Finding input sub-spaces for Polymorphic Fuzzy Signatures</atitle><btitle>2009 IEEE International Conference on Fuzzy Systems</btitle><stitle>FUZZY</stitle><date>2009-08</date><risdate>2009</risdate><spage>1089</spage><epage>1094</epage><pages>1089-1094</pages><issn>1098-7584</issn><isbn>9781424435968</isbn><isbn>142443596X</isbn><eisbn>9781424435975</eisbn><eisbn>1424435978</eisbn><abstract>A significant feature of fuzzy signatures is its applicability for complex and sparse data. To create polymorphic fuzzy signatures (PFS) for sparse data, sparse input sub-spaces (ISSs) should be considered. Finding the optimal ISSs manually is not a simple task as it is time consuming; moreover, some knowledge about the dataset is necessary. Fuzzy c-means (FCM) clustering employed with a trapezoidal approximation method is needed to find ISSs automatically. Furthermore, dealing with sparse data, we should be mindful about choosing a reliable trapezoidal approximation method. This facilitates the optimal ISS creation for the data. In our experiment, two trapezoidal approximation methods were used to find optimal ISSs. The results demonstrate that our version of trapezoidal approximation for creating ISSs result in an PFS with lower mean square error compared to the original trapezoidal approximation method.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.2009.5277055</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7584
ispartof 2009 IEEE International Conference on Fuzzy Systems, 2009, p.1089-1094
issn 1098-7584
language eng
recordid cdi_ieee_primary_5277055
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
Computer science
Data mining
Feedback
Fellows
Fuzzy C-Means
Fuzzy sets
Fuzzy Signatures
Input subspace clustering
Mean square error methods
Optimization methods
Polymorphic Fuzzy Signatures
Remuneration
Skeleton
Trapezoidal Approximation
WRAO
title Finding input sub-spaces for Polymorphic Fuzzy Signatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Finding%20input%20sub-spaces%20for%20Polymorphic%20Fuzzy%20Signatures&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Fuzzy%20Systems&rft.au=Hadad,%20A.H.&rft.date=2009-08&rft.spage=1089&rft.epage=1094&rft.pages=1089-1094&rft.issn=1098-7584&rft.isbn=9781424435968&rft.isbn_list=142443596X&rft_id=info:doi/10.1109/FUZZY.2009.5277055&rft_dat=%3Cieee_6IE%3E5277055%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424435975&rft.eisbn_list=1424435978&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5277055&rfr_iscdi=true