A greenfield approach to the future supply of multiple energy carriers
In this paper a model for the design of future multi-energy systems including electricity is presented. In this context a greenfield approach is applied, i.e. in a first step efficient portfolios for the supply of multiple energy carriers (e.g. electrical energy, heat, and chemical energy carriers)...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Kienzle, F. Andersson, G. |
description | In this paper a model for the design of future multi-energy systems including electricity is presented. In this context a greenfield approach is applied, i.e. in a first step efficient portfolios for the supply of multiple energy carriers (e.g. electrical energy, heat, and chemical energy carriers) are calculated for a certain target year. In a second step, an optimal transition path from a portfolio given today to the desired optimal portfolio in the future is determined. The method presented in this paper is based on a single-period mean-variance portfolio model, which is adapted to be used for portfolios providing multiple energy carriers. Optimal transition paths are calculated applying a dynamic programming method that maximizes utility along the transition path. The proposed method is illustrated applying it to a combined heat and power portfolio consisting of a set of small-scale generation technologies. |
doi_str_mv | 10.1109/PES.2009.5275692 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5275692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5275692</ieee_id><sourcerecordid>5275692</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6af2713b865986764a440bbeaa59a50a142e01bc58defef6de489a21b50455593</originalsourceid><addsrcrecordid>eNotj8FqwzAQRAVtoWmae6EX_YBdSdbK1jGEpC0EWmjuYW2vEhUnFrJ88N_X0ByGOTwY3jD2IkUupbBv39ufXAlhc1AlGKvu2MqWldRK6znS3LOFtIXKAGT5yJ6G4VcIKGa-YLs1P0Wiq_PUtRxDiD02Z556ns7E3ZjGSHwYQ-gm3jt-GbvkQ0ecrhRPE28wRk9xeGYPDruBVrdessNue9h8ZPuv98_Nep95K1Jm0KlSFnVlwFamNBq1FnVNiGARBM5GJGTdQNWSI2da0pVFJWsQGgBssWSv_7OeiI4h-gvG6Xh7XfwBbntLTQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A greenfield approach to the future supply of multiple energy carriers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kienzle, F. ; Andersson, G.</creator><creatorcontrib>Kienzle, F. ; Andersson, G.</creatorcontrib><description>In this paper a model for the design of future multi-energy systems including electricity is presented. In this context a greenfield approach is applied, i.e. in a first step efficient portfolios for the supply of multiple energy carriers (e.g. electrical energy, heat, and chemical energy carriers) are calculated for a certain target year. In a second step, an optimal transition path from a portfolio given today to the desired optimal portfolio in the future is determined. The method presented in this paper is based on a single-period mean-variance portfolio model, which is adapted to be used for portfolios providing multiple energy carriers. Optimal transition paths are calculated applying a dynamic programming method that maximizes utility along the transition path. The proposed method is illustrated applying it to a combined heat and power portfolio consisting of a set of small-scale generation technologies.</description><identifier>ISSN: 1932-5517</identifier><identifier>ISBN: 9781424442416</identifier><identifier>ISBN: 1424442419</identifier><identifier>DOI: 10.1109/PES.2009.5275692</identifier><language>eng</language><publisher>IEEE</publisher><subject>Carbon dioxide ; Chemicals ; Cogeneration ; Dynamic programming ; Fossil fuels ; Greenfield approach ; Investments ; mean-variance portfolio theory ; multi-period portfolio model ; multiple energy carriers ; Portfolios ; Power generation ; Power systems ; Radio access networks</subject><ispartof>2009 IEEE Power & Energy Society General Meeting, 2009, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5275692$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5275692$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kienzle, F.</creatorcontrib><creatorcontrib>Andersson, G.</creatorcontrib><title>A greenfield approach to the future supply of multiple energy carriers</title><title>2009 IEEE Power & Energy Society General Meeting</title><addtitle>PES</addtitle><description>In this paper a model for the design of future multi-energy systems including electricity is presented. In this context a greenfield approach is applied, i.e. in a first step efficient portfolios for the supply of multiple energy carriers (e.g. electrical energy, heat, and chemical energy carriers) are calculated for a certain target year. In a second step, an optimal transition path from a portfolio given today to the desired optimal portfolio in the future is determined. The method presented in this paper is based on a single-period mean-variance portfolio model, which is adapted to be used for portfolios providing multiple energy carriers. Optimal transition paths are calculated applying a dynamic programming method that maximizes utility along the transition path. The proposed method is illustrated applying it to a combined heat and power portfolio consisting of a set of small-scale generation technologies.</description><subject>Carbon dioxide</subject><subject>Chemicals</subject><subject>Cogeneration</subject><subject>Dynamic programming</subject><subject>Fossil fuels</subject><subject>Greenfield approach</subject><subject>Investments</subject><subject>mean-variance portfolio theory</subject><subject>multi-period portfolio model</subject><subject>multiple energy carriers</subject><subject>Portfolios</subject><subject>Power generation</subject><subject>Power systems</subject><subject>Radio access networks</subject><issn>1932-5517</issn><isbn>9781424442416</isbn><isbn>1424442419</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FqwzAQRAVtoWmae6EX_YBdSdbK1jGEpC0EWmjuYW2vEhUnFrJ88N_X0ByGOTwY3jD2IkUupbBv39ufXAlhc1AlGKvu2MqWldRK6znS3LOFtIXKAGT5yJ6G4VcIKGa-YLs1P0Wiq_PUtRxDiD02Z556ns7E3ZjGSHwYQ-gm3jt-GbvkQ0ecrhRPE28wRk9xeGYPDruBVrdessNue9h8ZPuv98_Nep95K1Jm0KlSFnVlwFamNBq1FnVNiGARBM5GJGTdQNWSI2da0pVFJWsQGgBssWSv_7OeiI4h-gvG6Xh7XfwBbntLTQ</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Kienzle, F.</creator><creator>Andersson, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200907</creationdate><title>A greenfield approach to the future supply of multiple energy carriers</title><author>Kienzle, F. ; Andersson, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6af2713b865986764a440bbeaa59a50a142e01bc58defef6de489a21b50455593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Carbon dioxide</topic><topic>Chemicals</topic><topic>Cogeneration</topic><topic>Dynamic programming</topic><topic>Fossil fuels</topic><topic>Greenfield approach</topic><topic>Investments</topic><topic>mean-variance portfolio theory</topic><topic>multi-period portfolio model</topic><topic>multiple energy carriers</topic><topic>Portfolios</topic><topic>Power generation</topic><topic>Power systems</topic><topic>Radio access networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Kienzle, F.</creatorcontrib><creatorcontrib>Andersson, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kienzle, F.</au><au>Andersson, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A greenfield approach to the future supply of multiple energy carriers</atitle><btitle>2009 IEEE Power & Energy Society General Meeting</btitle><stitle>PES</stitle><date>2009-07</date><risdate>2009</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1932-5517</issn><isbn>9781424442416</isbn><isbn>1424442419</isbn><abstract>In this paper a model for the design of future multi-energy systems including electricity is presented. In this context a greenfield approach is applied, i.e. in a first step efficient portfolios for the supply of multiple energy carriers (e.g. electrical energy, heat, and chemical energy carriers) are calculated for a certain target year. In a second step, an optimal transition path from a portfolio given today to the desired optimal portfolio in the future is determined. The method presented in this paper is based on a single-period mean-variance portfolio model, which is adapted to be used for portfolios providing multiple energy carriers. Optimal transition paths are calculated applying a dynamic programming method that maximizes utility along the transition path. The proposed method is illustrated applying it to a combined heat and power portfolio consisting of a set of small-scale generation technologies.</abstract><pub>IEEE</pub><doi>10.1109/PES.2009.5275692</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-5517 |
ispartof | 2009 IEEE Power & Energy Society General Meeting, 2009, p.1-8 |
issn | 1932-5517 |
language | eng |
recordid | cdi_ieee_primary_5275692 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Carbon dioxide Chemicals Cogeneration Dynamic programming Fossil fuels Greenfield approach Investments mean-variance portfolio theory multi-period portfolio model multiple energy carriers Portfolios Power generation Power systems Radio access networks |
title | A greenfield approach to the future supply of multiple energy carriers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20greenfield%20approach%20to%20the%20future%20supply%20of%20multiple%20energy%20carriers&rft.btitle=2009%20IEEE%20Power%20&%20Energy%20Society%20General%20Meeting&rft.au=Kienzle,%20F.&rft.date=2009-07&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1932-5517&rft.isbn=9781424442416&rft.isbn_list=1424442419&rft_id=info:doi/10.1109/PES.2009.5275692&rft_dat=%3Cieee_6IE%3E5275692%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5275692&rfr_iscdi=true |