Study on a recurrent functional link-based fuzzy neural network controller with improved particle swarm optimization

A recurrent functional link-based fuzzy neural network controller with improved particle swarm optimization is proposed to control the mover of a permanent-magnet synchronous motor (PMSM) servo drive to track periodic reference trajectories. First, a recurrent functional link-based fuzzy neural netw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhirong Guo, Shunyi Xie, Wei Gao
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3-1100
container_issue
container_start_page 3-1095
container_title
container_volume
creator Zhirong Guo
Shunyi Xie
Wei Gao
description A recurrent functional link-based fuzzy neural network controller with improved particle swarm optimization is proposed to control the mover of a permanent-magnet synchronous motor (PMSM) servo drive to track periodic reference trajectories. First, a recurrent functional link-based fuzzy neural network is proposed to control the PMSM, and the connective weights of the recurrent functional link-base neural network, the mean value and standard deviation of Gaussian function are trained online by recurrent algorithm. Moreover, an improved particle swarm optimization (IPSO) is adopted in this study to adapt the learning rates to improve the learning capability and increase the speed of constringency. Finally, the control performance of the proposed method is verified by the simulated results.
doi_str_mv 10.1109/ICEMI.2009.5274344
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5274344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5274344</ieee_id><sourcerecordid>5274344</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3b355a08813dc0fb0d628ac7e89d44d938eb3896ed25d6a9da8fab719c8a7e643</originalsourceid><addsrcrecordid>eNpFUFFLwzAYjMhAN_cH9CV_oDNpkjZ5lDHdYOKDex9p8hXj2qSkqWP79XY48F6OO47jOIQeKVlQStTzZrl63yxyQtRC5CVnnN-gKeU550wWnNz-C5ZP0PQSVIQIKu7QvO-_yQgumBD8HqXPNNgTDh5rHMEMMYJPuB68SS543eDG-UNW6R7s6J7PJ-xhiKPvIR1DPGATfIqhaSDio0tf2LVdDD9jutMxOdMA7o86tjh0ybXurC-1D2hS66aH-ZVnaPe62i3X2fbjbbN82WZOkZSxapyoiZSUWUPqitgil9qUIJXl3ComoWJSFWBzYQutrJa1rkqqjNQlFJzN0NNfrQOAfRddq-Npf32M_QKcE2E9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Study on a recurrent functional link-based fuzzy neural network controller with improved particle swarm optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhirong Guo ; Shunyi Xie ; Wei Gao</creator><creatorcontrib>Zhirong Guo ; Shunyi Xie ; Wei Gao</creatorcontrib><description>A recurrent functional link-based fuzzy neural network controller with improved particle swarm optimization is proposed to control the mover of a permanent-magnet synchronous motor (PMSM) servo drive to track periodic reference trajectories. First, a recurrent functional link-based fuzzy neural network is proposed to control the PMSM, and the connective weights of the recurrent functional link-base neural network, the mean value and standard deviation of Gaussian function are trained online by recurrent algorithm. Moreover, an improved particle swarm optimization (IPSO) is adopted in this study to adapt the learning rates to improve the learning capability and increase the speed of constringency. Finally, the control performance of the proposed method is verified by the simulated results.</description><identifier>ISBN: 1424438632</identifier><identifier>ISBN: 9781424438631</identifier><identifier>EISBN: 1424438640</identifier><identifier>EISBN: 9781424438648</identifier><identifier>DOI: 10.1109/ICEMI.2009.5274344</identifier><identifier>LCCN: 2009900515</identifier><language>eng</language><publisher>IEEE</publisher><subject>Error correction ; Fuzzy control ; fuzzy neural network ; Fuzzy neural networks ; Instruments ; Neural networks ; Nonlinear dynamical systems ; Particle swarm optimization ; Particle tracking ; permanent magnet synchronous motor ; recurrent function ; Recurrent neural networks ; Zirconium</subject><ispartof>2009 9th International Conference on Electronic Measurement &amp; Instruments, 2009, p.3-1095-3-1100</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5274344$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5274344$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhirong Guo</creatorcontrib><creatorcontrib>Shunyi Xie</creatorcontrib><creatorcontrib>Wei Gao</creatorcontrib><title>Study on a recurrent functional link-based fuzzy neural network controller with improved particle swarm optimization</title><title>2009 9th International Conference on Electronic Measurement &amp; Instruments</title><addtitle>ICEMI</addtitle><description>A recurrent functional link-based fuzzy neural network controller with improved particle swarm optimization is proposed to control the mover of a permanent-magnet synchronous motor (PMSM) servo drive to track periodic reference trajectories. First, a recurrent functional link-based fuzzy neural network is proposed to control the PMSM, and the connective weights of the recurrent functional link-base neural network, the mean value and standard deviation of Gaussian function are trained online by recurrent algorithm. Moreover, an improved particle swarm optimization (IPSO) is adopted in this study to adapt the learning rates to improve the learning capability and increase the speed of constringency. Finally, the control performance of the proposed method is verified by the simulated results.</description><subject>Error correction</subject><subject>Fuzzy control</subject><subject>fuzzy neural network</subject><subject>Fuzzy neural networks</subject><subject>Instruments</subject><subject>Neural networks</subject><subject>Nonlinear dynamical systems</subject><subject>Particle swarm optimization</subject><subject>Particle tracking</subject><subject>permanent magnet synchronous motor</subject><subject>recurrent function</subject><subject>Recurrent neural networks</subject><subject>Zirconium</subject><isbn>1424438632</isbn><isbn>9781424438631</isbn><isbn>1424438640</isbn><isbn>9781424438648</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUFFLwzAYjMhAN_cH9CV_oDNpkjZ5lDHdYOKDex9p8hXj2qSkqWP79XY48F6OO47jOIQeKVlQStTzZrl63yxyQtRC5CVnnN-gKeU550wWnNz-C5ZP0PQSVIQIKu7QvO-_yQgumBD8HqXPNNgTDh5rHMEMMYJPuB68SS543eDG-UNW6R7s6J7PJ-xhiKPvIR1DPGATfIqhaSDio0tf2LVdDD9jutMxOdMA7o86tjh0ybXurC-1D2hS66aH-ZVnaPe62i3X2fbjbbN82WZOkZSxapyoiZSUWUPqitgil9qUIJXl3ComoWJSFWBzYQutrJa1rkqqjNQlFJzN0NNfrQOAfRddq-Npf32M_QKcE2E9</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Zhirong Guo</creator><creator>Shunyi Xie</creator><creator>Wei Gao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>Study on a recurrent functional link-based fuzzy neural network controller with improved particle swarm optimization</title><author>Zhirong Guo ; Shunyi Xie ; Wei Gao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3b355a08813dc0fb0d628ac7e89d44d938eb3896ed25d6a9da8fab719c8a7e643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Error correction</topic><topic>Fuzzy control</topic><topic>fuzzy neural network</topic><topic>Fuzzy neural networks</topic><topic>Instruments</topic><topic>Neural networks</topic><topic>Nonlinear dynamical systems</topic><topic>Particle swarm optimization</topic><topic>Particle tracking</topic><topic>permanent magnet synchronous motor</topic><topic>recurrent function</topic><topic>Recurrent neural networks</topic><topic>Zirconium</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhirong Guo</creatorcontrib><creatorcontrib>Shunyi Xie</creatorcontrib><creatorcontrib>Wei Gao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhirong Guo</au><au>Shunyi Xie</au><au>Wei Gao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Study on a recurrent functional link-based fuzzy neural network controller with improved particle swarm optimization</atitle><btitle>2009 9th International Conference on Electronic Measurement &amp; Instruments</btitle><stitle>ICEMI</stitle><date>2009-08</date><risdate>2009</risdate><spage>3-1095</spage><epage>3-1100</epage><pages>3-1095-3-1100</pages><isbn>1424438632</isbn><isbn>9781424438631</isbn><eisbn>1424438640</eisbn><eisbn>9781424438648</eisbn><abstract>A recurrent functional link-based fuzzy neural network controller with improved particle swarm optimization is proposed to control the mover of a permanent-magnet synchronous motor (PMSM) servo drive to track periodic reference trajectories. First, a recurrent functional link-based fuzzy neural network is proposed to control the PMSM, and the connective weights of the recurrent functional link-base neural network, the mean value and standard deviation of Gaussian function are trained online by recurrent algorithm. Moreover, an improved particle swarm optimization (IPSO) is adopted in this study to adapt the learning rates to improve the learning capability and increase the speed of constringency. Finally, the control performance of the proposed method is verified by the simulated results.</abstract><pub>IEEE</pub><doi>10.1109/ICEMI.2009.5274344</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424438632
ispartof 2009 9th International Conference on Electronic Measurement & Instruments, 2009, p.3-1095-3-1100
issn
language eng
recordid cdi_ieee_primary_5274344
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Error correction
Fuzzy control
fuzzy neural network
Fuzzy neural networks
Instruments
Neural networks
Nonlinear dynamical systems
Particle swarm optimization
Particle tracking
permanent magnet synchronous motor
recurrent function
Recurrent neural networks
Zirconium
title Study on a recurrent functional link-based fuzzy neural network controller with improved particle swarm optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Study%20on%20a%20recurrent%20functional%20link-based%20fuzzy%20neural%20network%20controller%20with%20improved%20particle%20swarm%20optimization&rft.btitle=2009%209th%20International%20Conference%20on%20Electronic%20Measurement%20&%20Instruments&rft.au=Zhirong%20Guo&rft.date=2009-08&rft.spage=3-1095&rft.epage=3-1100&rft.pages=3-1095-3-1100&rft.isbn=1424438632&rft.isbn_list=9781424438631&rft_id=info:doi/10.1109/ICEMI.2009.5274344&rft_dat=%3Cieee_6IE%3E5274344%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424438640&rft.eisbn_list=9781424438648&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5274344&rfr_iscdi=true