Integrating multimedia and artifical intelligence for pest prediction and aeration control of stored grain bins

In the present study, an intelligent system with human-machine interface of knowledge acquisition is established to implement the pest prediction and the aeration control of stored grain bins. In the system, recurrent neuro-fuzzy network models are proposed to predict temperature evolvement in the g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiujuan Liu, Chunguang Wang, Yunhong Su, Tieyu Hu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3-883
container_issue
container_start_page 3-880
container_title
container_volume
creator Xiujuan Liu
Chunguang Wang
Yunhong Su
Tieyu Hu
description In the present study, an intelligent system with human-machine interface of knowledge acquisition is established to implement the pest prediction and the aeration control of stored grain bins. In the system, recurrent neuro-fuzzy network models are proposed to predict temperature evolvement in the grain bins. 3D multimedia displays of node sensor-measured temperatures, and its gradient distributions of the given grain layer and their variations in the interval of the given time are used to extract the system knowledge in the current and future. The results of the experiment in the two grain depots in northeastern China have verified the effectiveness of the system.
doi_str_mv 10.1109/ICEMI.2009.5274158
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5274158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5274158</ieee_id><sourcerecordid>5274158</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-afb6972ccf0290fde6c570635516524b976127b5cb58893055ba608ccdc2bc1e3</originalsourceid><addsrcrecordid>eNpFkEFLAzEUhCNSUGv_gF7yB1pfsnnZzVFK1YWKl95Lkk1KZJuUbDz4701pwbk8Bj7mDUPIE4MVY6Be-vXms19xALVC3gqG3Q15YIIL0XRSwO2_afiMPJxBBYAM78himr6hSmCDKO5J6mNxh6xLiAd6_BlLOLohaKrjQHUuwQerRxoqNI7h4KJ11KdMT24q9JQraktI8YK7c0w1NsWS00iTp1NJFaL1QYjUhDg9kpnX4-QW1zsnu7fNbv2x3H699-vX7TIoKEvtjVQtt9YDV-AHJy22IGtlJpELo1rJeGvQGuw61QCi0RI6awfLjWWumZPnS2xwzu1PORx1_t1fx2r-AOISXc4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Integrating multimedia and artifical intelligence for pest prediction and aeration control of stored grain bins</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiujuan Liu ; Chunguang Wang ; Yunhong Su ; Tieyu Hu</creator><creatorcontrib>Xiujuan Liu ; Chunguang Wang ; Yunhong Su ; Tieyu Hu</creatorcontrib><description>In the present study, an intelligent system with human-machine interface of knowledge acquisition is established to implement the pest prediction and the aeration control of stored grain bins. In the system, recurrent neuro-fuzzy network models are proposed to predict temperature evolvement in the grain bins. 3D multimedia displays of node sensor-measured temperatures, and its gradient distributions of the given grain layer and their variations in the interval of the given time are used to extract the system knowledge in the current and future. The results of the experiment in the two grain depots in northeastern China have verified the effectiveness of the system.</description><identifier>ISBN: 1424438632</identifier><identifier>ISBN: 9781424438631</identifier><identifier>EISBN: 1424438640</identifier><identifier>EISBN: 9781424438648</identifier><identifier>DOI: 10.1109/ICEMI.2009.5274158</identifier><identifier>LCCN: 2009900515</identifier><language>eng</language><publisher>IEEE</publisher><subject>aeration control ; Control systems ; Fuzzy neural networks ; Grain storage ; Intelligent sensors ; Intelligent systems ; Knowledge acquisition ; Man machine systems ; Multimedia systems ; pest prediction ; Predictive models ; recurrent neuro-fuzzy network ; Temperature distribution ; Temperature sensors ; wireless communication</subject><ispartof>2009 9th International Conference on Electronic Measurement &amp; Instruments, 2009, p.3-880-3-883</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5274158$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5274158$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiujuan Liu</creatorcontrib><creatorcontrib>Chunguang Wang</creatorcontrib><creatorcontrib>Yunhong Su</creatorcontrib><creatorcontrib>Tieyu Hu</creatorcontrib><title>Integrating multimedia and artifical intelligence for pest prediction and aeration control of stored grain bins</title><title>2009 9th International Conference on Electronic Measurement &amp; Instruments</title><addtitle>ICEMI</addtitle><description>In the present study, an intelligent system with human-machine interface of knowledge acquisition is established to implement the pest prediction and the aeration control of stored grain bins. In the system, recurrent neuro-fuzzy network models are proposed to predict temperature evolvement in the grain bins. 3D multimedia displays of node sensor-measured temperatures, and its gradient distributions of the given grain layer and their variations in the interval of the given time are used to extract the system knowledge in the current and future. The results of the experiment in the two grain depots in northeastern China have verified the effectiveness of the system.</description><subject>aeration control</subject><subject>Control systems</subject><subject>Fuzzy neural networks</subject><subject>Grain storage</subject><subject>Intelligent sensors</subject><subject>Intelligent systems</subject><subject>Knowledge acquisition</subject><subject>Man machine systems</subject><subject>Multimedia systems</subject><subject>pest prediction</subject><subject>Predictive models</subject><subject>recurrent neuro-fuzzy network</subject><subject>Temperature distribution</subject><subject>Temperature sensors</subject><subject>wireless communication</subject><isbn>1424438632</isbn><isbn>9781424438631</isbn><isbn>1424438640</isbn><isbn>9781424438648</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEFLAzEUhCNSUGv_gF7yB1pfsnnZzVFK1YWKl95Lkk1KZJuUbDz4701pwbk8Bj7mDUPIE4MVY6Be-vXms19xALVC3gqG3Q15YIIL0XRSwO2_afiMPJxBBYAM78himr6hSmCDKO5J6mNxh6xLiAd6_BlLOLohaKrjQHUuwQerRxoqNI7h4KJ11KdMT24q9JQraktI8YK7c0w1NsWS00iTp1NJFaL1QYjUhDg9kpnX4-QW1zsnu7fNbv2x3H699-vX7TIoKEvtjVQtt9YDV-AHJy22IGtlJpELo1rJeGvQGuw61QCi0RI6awfLjWWumZPnS2xwzu1PORx1_t1fx2r-AOISXc4</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Xiujuan Liu</creator><creator>Chunguang Wang</creator><creator>Yunhong Su</creator><creator>Tieyu Hu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>Integrating multimedia and artifical intelligence for pest prediction and aeration control of stored grain bins</title><author>Xiujuan Liu ; Chunguang Wang ; Yunhong Su ; Tieyu Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-afb6972ccf0290fde6c570635516524b976127b5cb58893055ba608ccdc2bc1e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>aeration control</topic><topic>Control systems</topic><topic>Fuzzy neural networks</topic><topic>Grain storage</topic><topic>Intelligent sensors</topic><topic>Intelligent systems</topic><topic>Knowledge acquisition</topic><topic>Man machine systems</topic><topic>Multimedia systems</topic><topic>pest prediction</topic><topic>Predictive models</topic><topic>recurrent neuro-fuzzy network</topic><topic>Temperature distribution</topic><topic>Temperature sensors</topic><topic>wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiujuan Liu</creatorcontrib><creatorcontrib>Chunguang Wang</creatorcontrib><creatorcontrib>Yunhong Su</creatorcontrib><creatorcontrib>Tieyu Hu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiujuan Liu</au><au>Chunguang Wang</au><au>Yunhong Su</au><au>Tieyu Hu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Integrating multimedia and artifical intelligence for pest prediction and aeration control of stored grain bins</atitle><btitle>2009 9th International Conference on Electronic Measurement &amp; Instruments</btitle><stitle>ICEMI</stitle><date>2009-08</date><risdate>2009</risdate><spage>3-880</spage><epage>3-883</epage><pages>3-880-3-883</pages><isbn>1424438632</isbn><isbn>9781424438631</isbn><eisbn>1424438640</eisbn><eisbn>9781424438648</eisbn><abstract>In the present study, an intelligent system with human-machine interface of knowledge acquisition is established to implement the pest prediction and the aeration control of stored grain bins. In the system, recurrent neuro-fuzzy network models are proposed to predict temperature evolvement in the grain bins. 3D multimedia displays of node sensor-measured temperatures, and its gradient distributions of the given grain layer and their variations in the interval of the given time are used to extract the system knowledge in the current and future. The results of the experiment in the two grain depots in northeastern China have verified the effectiveness of the system.</abstract><pub>IEEE</pub><doi>10.1109/ICEMI.2009.5274158</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424438632
ispartof 2009 9th International Conference on Electronic Measurement & Instruments, 2009, p.3-880-3-883
issn
language eng
recordid cdi_ieee_primary_5274158
source IEEE Electronic Library (IEL) Conference Proceedings
subjects aeration control
Control systems
Fuzzy neural networks
Grain storage
Intelligent sensors
Intelligent systems
Knowledge acquisition
Man machine systems
Multimedia systems
pest prediction
Predictive models
recurrent neuro-fuzzy network
Temperature distribution
Temperature sensors
wireless communication
title Integrating multimedia and artifical intelligence for pest prediction and aeration control of stored grain bins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Integrating%20multimedia%20and%20artifical%20intelligence%20for%20pest%20prediction%20and%20aeration%20control%20of%20stored%20grain%20bins&rft.btitle=2009%209th%20International%20Conference%20on%20Electronic%20Measurement%20&%20Instruments&rft.au=Xiujuan%20Liu&rft.date=2009-08&rft.spage=3-880&rft.epage=3-883&rft.pages=3-880-3-883&rft.isbn=1424438632&rft.isbn_list=9781424438631&rft_id=info:doi/10.1109/ICEMI.2009.5274158&rft_dat=%3Cieee_6IE%3E5274158%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424438640&rft.eisbn_list=9781424438648&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5274158&rfr_iscdi=true