Au-sn SLID bonding: Fluxless bonding with high temperature stability to above 350 °c
A fluxless SLID (solid-liquid inter diffusion) bonding process based on Au and Sn, where the final bond consists of intermetallics with high melting point, is presented. The decomposition temperature of the bond was tested by applying shear force while heating bonded samples. No bond delamination wa...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Aasmundtveit, K.E. Wang, K. Hoivik, N. Graff, J.M. Elfving, A. |
description | A fluxless SLID (solid-liquid inter diffusion) bonding process based on Au and Sn, where the final bond consists of intermetallics with high melting point, is presented. The decomposition temperature of the bond was tested by applying shear force while heating bonded samples. No bond delamination was observed for temperatures up to 350-400degC, which is 100degC higher than the melting temperature of the commonly used eutectic Au-Sn bonds (80 wt% Au, melting at 278degC). The Au-Sn metal system is of great interest since it is oxidation resistant, allowing fluxless bonding. The high temperature stability of the presented process opens the possibility to use Au-Sn bonding for true high-temperature applications. The bonded samples had electroplated Au-Sn layers, with an overall composition of 8 wt% Sn (13 at% Sn), thus being a surplus of Au relative to the eutectic point. The Sn layer was converted to an intermetallic compound prior to bonding. No flux agent or chemical surface treatment was used. SEM/ EDS analysis of cross-sections shows uniform bond lines consisting of a layered structure: Au / Au-Sn-alloy / Au. The bonding alloy, being rich in Au, was identified as the zeta/ zeta' phase (Au 5 Sn). This phase, with a melting point up to 519degC, explains the elevated delamination temperature of the bonded samples. Since the Au-Sn phase diagram does not contain room-temperature phases between the zeta' phase (Au 5 Sn) and the Au phase, the bond is expected to be stable over time. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5272923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5272923</ieee_id><sourcerecordid>5272923</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8835224cbdc30adc20e0d2b4f00f527b0158886c81f069c24ca85f69abb291113</originalsourceid><addsrcrecordid>eNo1jktOwzAYhI0QElByAja-QKTfz9jsqkKhUiQWlHVlO3ZjlCZV7AC9FWfgZEQCVqMZfTOaM1ToSoEkgmollT5H14RTznlFKb9ERUpvAEC0nD1codflVKYev9Sbe2yHvon9_g6vu-mz8yn9J_gj5ha3cd_i7A9HP5o8jR6nbGzsYj7hPGBjh3ePmQD8_eVu0EUwXfLFny7Qdv2wXT2V9fPjZrWsy6ghl0oxMZ9ytnEMTOMoeGio5QEgCFpZIEIpJZ0iAaR2M2mUCFIba6kmhLAFuv2djd773XGMBzOednOVasrYD232S1o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Au-sn SLID bonding: Fluxless bonding with high temperature stability to above 350 °c</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Aasmundtveit, K.E. ; Wang, K. ; Hoivik, N. ; Graff, J.M. ; Elfving, A.</creator><creatorcontrib>Aasmundtveit, K.E. ; Wang, K. ; Hoivik, N. ; Graff, J.M. ; Elfving, A.</creatorcontrib><description>A fluxless SLID (solid-liquid inter diffusion) bonding process based on Au and Sn, where the final bond consists of intermetallics with high melting point, is presented. The decomposition temperature of the bond was tested by applying shear force while heating bonded samples. No bond delamination was observed for temperatures up to 350-400degC, which is 100degC higher than the melting temperature of the commonly used eutectic Au-Sn bonds (80 wt% Au, melting at 278degC). The Au-Sn metal system is of great interest since it is oxidation resistant, allowing fluxless bonding. The high temperature stability of the presented process opens the possibility to use Au-Sn bonding for true high-temperature applications. The bonded samples had electroplated Au-Sn layers, with an overall composition of 8 wt% Sn (13 at% Sn), thus being a surplus of Au relative to the eutectic point. The Sn layer was converted to an intermetallic compound prior to bonding. No flux agent or chemical surface treatment was used. SEM/ EDS analysis of cross-sections shows uniform bond lines consisting of a layered structure: Au / Au-Sn-alloy / Au. The bonding alloy, being rich in Au, was identified as the zeta/ zeta' phase (Au 5 Sn). This phase, with a melting point up to 519degC, explains the elevated delamination temperature of the bonded samples. Since the Au-Sn phase diagram does not contain room-temperature phases between the zeta' phase (Au 5 Sn) and the Au phase, the bond is expected to be stable over time.</description><identifier>ISBN: 1424447224</identifier><identifier>ISBN: 9781424447220</identifier><identifier>EISBN: 9780615298689</identifier><identifier>EISBN: 0615298680</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D integration ; Bonding forces ; Bonding processes ; Delamination ; Diffusion bonding ; Electroplating ; Fluxless bonding ; Gold ; High-temperature applications ; Intermetallic ; Stability ; Temperature ; Testing ; Tin</subject><ispartof>2009 European Microelectronics and Packaging Conference, 2009, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5272923$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5272923$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aasmundtveit, K.E.</creatorcontrib><creatorcontrib>Wang, K.</creatorcontrib><creatorcontrib>Hoivik, N.</creatorcontrib><creatorcontrib>Graff, J.M.</creatorcontrib><creatorcontrib>Elfving, A.</creatorcontrib><title>Au-sn SLID bonding: Fluxless bonding with high temperature stability to above 350 °c</title><title>2009 European Microelectronics and Packaging Conference</title><addtitle>EMPC</addtitle><description>A fluxless SLID (solid-liquid inter diffusion) bonding process based on Au and Sn, where the final bond consists of intermetallics with high melting point, is presented. The decomposition temperature of the bond was tested by applying shear force while heating bonded samples. No bond delamination was observed for temperatures up to 350-400degC, which is 100degC higher than the melting temperature of the commonly used eutectic Au-Sn bonds (80 wt% Au, melting at 278degC). The Au-Sn metal system is of great interest since it is oxidation resistant, allowing fluxless bonding. The high temperature stability of the presented process opens the possibility to use Au-Sn bonding for true high-temperature applications. The bonded samples had electroplated Au-Sn layers, with an overall composition of 8 wt% Sn (13 at% Sn), thus being a surplus of Au relative to the eutectic point. The Sn layer was converted to an intermetallic compound prior to bonding. No flux agent or chemical surface treatment was used. SEM/ EDS analysis of cross-sections shows uniform bond lines consisting of a layered structure: Au / Au-Sn-alloy / Au. The bonding alloy, being rich in Au, was identified as the zeta/ zeta' phase (Au 5 Sn). This phase, with a melting point up to 519degC, explains the elevated delamination temperature of the bonded samples. Since the Au-Sn phase diagram does not contain room-temperature phases between the zeta' phase (Au 5 Sn) and the Au phase, the bond is expected to be stable over time.</description><subject>3D integration</subject><subject>Bonding forces</subject><subject>Bonding processes</subject><subject>Delamination</subject><subject>Diffusion bonding</subject><subject>Electroplating</subject><subject>Fluxless bonding</subject><subject>Gold</subject><subject>High-temperature applications</subject><subject>Intermetallic</subject><subject>Stability</subject><subject>Temperature</subject><subject>Testing</subject><subject>Tin</subject><isbn>1424447224</isbn><isbn>9781424447220</isbn><isbn>9780615298689</isbn><isbn>0615298680</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jktOwzAYhI0QElByAja-QKTfz9jsqkKhUiQWlHVlO3ZjlCZV7AC9FWfgZEQCVqMZfTOaM1ToSoEkgmollT5H14RTznlFKb9ERUpvAEC0nD1codflVKYev9Sbe2yHvon9_g6vu-mz8yn9J_gj5ha3cd_i7A9HP5o8jR6nbGzsYj7hPGBjh3ePmQD8_eVu0EUwXfLFny7Qdv2wXT2V9fPjZrWsy6ghl0oxMZ9ytnEMTOMoeGio5QEgCFpZIEIpJZ0iAaR2M2mUCFIba6kmhLAFuv2djd773XGMBzOednOVasrYD232S1o</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Aasmundtveit, K.E.</creator><creator>Wang, K.</creator><creator>Hoivik, N.</creator><creator>Graff, J.M.</creator><creator>Elfving, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Au-sn SLID bonding: Fluxless bonding with high temperature stability to above 350 °c</title><author>Aasmundtveit, K.E. ; Wang, K. ; Hoivik, N. ; Graff, J.M. ; Elfving, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8835224cbdc30adc20e0d2b4f00f527b0158886c81f069c24ca85f69abb291113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>3D integration</topic><topic>Bonding forces</topic><topic>Bonding processes</topic><topic>Delamination</topic><topic>Diffusion bonding</topic><topic>Electroplating</topic><topic>Fluxless bonding</topic><topic>Gold</topic><topic>High-temperature applications</topic><topic>Intermetallic</topic><topic>Stability</topic><topic>Temperature</topic><topic>Testing</topic><topic>Tin</topic><toplevel>online_resources</toplevel><creatorcontrib>Aasmundtveit, K.E.</creatorcontrib><creatorcontrib>Wang, K.</creatorcontrib><creatorcontrib>Hoivik, N.</creatorcontrib><creatorcontrib>Graff, J.M.</creatorcontrib><creatorcontrib>Elfving, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aasmundtveit, K.E.</au><au>Wang, K.</au><au>Hoivik, N.</au><au>Graff, J.M.</au><au>Elfving, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Au-sn SLID bonding: Fluxless bonding with high temperature stability to above 350 °c</atitle><btitle>2009 European Microelectronics and Packaging Conference</btitle><stitle>EMPC</stitle><date>2009-06</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1424447224</isbn><isbn>9781424447220</isbn><eisbn>9780615298689</eisbn><eisbn>0615298680</eisbn><abstract>A fluxless SLID (solid-liquid inter diffusion) bonding process based on Au and Sn, where the final bond consists of intermetallics with high melting point, is presented. The decomposition temperature of the bond was tested by applying shear force while heating bonded samples. No bond delamination was observed for temperatures up to 350-400degC, which is 100degC higher than the melting temperature of the commonly used eutectic Au-Sn bonds (80 wt% Au, melting at 278degC). The Au-Sn metal system is of great interest since it is oxidation resistant, allowing fluxless bonding. The high temperature stability of the presented process opens the possibility to use Au-Sn bonding for true high-temperature applications. The bonded samples had electroplated Au-Sn layers, with an overall composition of 8 wt% Sn (13 at% Sn), thus being a surplus of Au relative to the eutectic point. The Sn layer was converted to an intermetallic compound prior to bonding. No flux agent or chemical surface treatment was used. SEM/ EDS analysis of cross-sections shows uniform bond lines consisting of a layered structure: Au / Au-Sn-alloy / Au. The bonding alloy, being rich in Au, was identified as the zeta/ zeta' phase (Au 5 Sn). This phase, with a melting point up to 519degC, explains the elevated delamination temperature of the bonded samples. Since the Au-Sn phase diagram does not contain room-temperature phases between the zeta' phase (Au 5 Sn) and the Au phase, the bond is expected to be stable over time.</abstract><pub>IEEE</pub><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424447224 |
ispartof | 2009 European Microelectronics and Packaging Conference, 2009, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5272923 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | 3D integration Bonding forces Bonding processes Delamination Diffusion bonding Electroplating Fluxless bonding Gold High-temperature applications Intermetallic Stability Temperature Testing Tin |
title | Au-sn SLID bonding: Fluxless bonding with high temperature stability to above 350 °c |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Au-sn%20SLID%20bonding:%20Fluxless%20bonding%20with%20high%20temperature%20stability%20to%20above%20350%20%C2%B0c&rft.btitle=2009%20European%20Microelectronics%20and%20Packaging%20Conference&rft.au=Aasmundtveit,%20K.E.&rft.date=2009-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1424447224&rft.isbn_list=9781424447220&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5272923%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780615298689&rft.eisbn_list=0615298680&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5272923&rfr_iscdi=true |