A proposed life cycle forecasting model of complex recycling technical systems by implementing neural super network

The purpose of this paper is to increase the efficiency of functionality and reliability of complex recycling technical systems (CRTS) community, through improving the control quality of their life cycle. Automated control system (ACS) on the basis of neural super-network learning for forecasting da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yaghi, K.A., Abu-Dawwas, W.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 484
container_issue
container_start_page 482
container_title
container_volume
creator Yaghi, K.A.
Abu-Dawwas, W.A.
description The purpose of this paper is to increase the efficiency of functionality and reliability of complex recycling technical systems (CRTS) community, through improving the control quality of their life cycle. Automated control system (ACS) on the basis of neural super-network learning for forecasting damages and ensuring its information representation for learning was proposed. In the paper it was suggested an architecture and a method of learning of a neural super-network for forecasting the progress of CRTS community life cycle.
doi_str_mv 10.1109/NDT.2009.5272222
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5272222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5272222</ieee_id><sourcerecordid>5272222</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c36a806314bb4493b178a44feeaa53cac10454529976e91ec2da79054acb4e0c3</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhI2gEm3pHYmL_0CKH-s4PlaFAlIFl3KuHHcDhrxkp4L8exKoxF5Ws9_MHJaQa86WnDNz-3y3WwrGzFIJLYY5IzMOAgBSrtT5vwB9QaZiuCWZFtmEzMaQYSBSdkkWMX4wxqRgElI5JXFF29C0TcQDLX2B1PWuRFo0AZ2Nna_faNUcsKRNQV1TtSV-0wENphF16N5r72xJYx87rCLNe-pHV4X1b7jGYxjxscUwiO6rCZ9XZFLYMuLitOfkdXO_Wz8m25eHp_Vqm3iuVZc4mdqMpZJDngMYmXOdWYAC0VolnXWcgQIljNEpGo5OHKw2TIF1OSBzck5u_no9Iu7b4Csb-v3pe_IHtMphKA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A proposed life cycle forecasting model of complex recycling technical systems by implementing neural super network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yaghi, K.A. ; Abu-Dawwas, W.A.</creator><creatorcontrib>Yaghi, K.A. ; Abu-Dawwas, W.A.</creatorcontrib><description>The purpose of this paper is to increase the efficiency of functionality and reliability of complex recycling technical systems (CRTS) community, through improving the control quality of their life cycle. Automated control system (ACS) on the basis of neural super-network learning for forecasting damages and ensuring its information representation for learning was proposed. In the paper it was suggested an architecture and a method of learning of a neural super-network for forecasting the progress of CRTS community life cycle.</description><identifier>ISSN: 2155-8728</identifier><identifier>ISBN: 1424446147</identifier><identifier>ISBN: 9781424446148</identifier><identifier>EISBN: 1424446155</identifier><identifier>EISBN: 9781424446155</identifier><identifier>DOI: 10.1109/NDT.2009.5272222</identifier><identifier>LCCN: 2009904260</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Automated Control System (ACS) ; Automatic control ; Cathode ray tubes ; Complex Recycling Technical Systems (CRTS) ; Control systems ; Information representation ; Management information systems ; Neural Network (NN) ; Neural networks ; Neural Super-Network ; Optical computing ; Predictive models ; Recycling</subject><ispartof>2009 First International Conference on Networked Digital Technologies, 2009, p.482-484</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5272222$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5272222$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yaghi, K.A.</creatorcontrib><creatorcontrib>Abu-Dawwas, W.A.</creatorcontrib><title>A proposed life cycle forecasting model of complex recycling technical systems by implementing neural super network</title><title>2009 First International Conference on Networked Digital Technologies</title><addtitle>NDT</addtitle><description>The purpose of this paper is to increase the efficiency of functionality and reliability of complex recycling technical systems (CRTS) community, through improving the control quality of their life cycle. Automated control system (ACS) on the basis of neural super-network learning for forecasting damages and ensuring its information representation for learning was proposed. In the paper it was suggested an architecture and a method of learning of a neural super-network for forecasting the progress of CRTS community life cycle.</description><subject>Artificial neural networks</subject><subject>Automated Control System (ACS)</subject><subject>Automatic control</subject><subject>Cathode ray tubes</subject><subject>Complex Recycling Technical Systems (CRTS)</subject><subject>Control systems</subject><subject>Information representation</subject><subject>Management information systems</subject><subject>Neural Network (NN)</subject><subject>Neural networks</subject><subject>Neural Super-Network</subject><subject>Optical computing</subject><subject>Predictive models</subject><subject>Recycling</subject><issn>2155-8728</issn><isbn>1424446147</isbn><isbn>9781424446148</isbn><isbn>1424446155</isbn><isbn>9781424446155</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtPwzAQhI2gEm3pHYmL_0CKH-s4PlaFAlIFl3KuHHcDhrxkp4L8exKoxF5Ws9_MHJaQa86WnDNz-3y3WwrGzFIJLYY5IzMOAgBSrtT5vwB9QaZiuCWZFtmEzMaQYSBSdkkWMX4wxqRgElI5JXFF29C0TcQDLX2B1PWuRFo0AZ2Nna_faNUcsKRNQV1TtSV-0wENphF16N5r72xJYx87rCLNe-pHV4X1b7jGYxjxscUwiO6rCZ9XZFLYMuLitOfkdXO_Wz8m25eHp_Vqm3iuVZc4mdqMpZJDngMYmXOdWYAC0VolnXWcgQIljNEpGo5OHKw2TIF1OSBzck5u_no9Iu7b4Csb-v3pe_IHtMphKA</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Yaghi, K.A.</creator><creator>Abu-Dawwas, W.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>A proposed life cycle forecasting model of complex recycling technical systems by implementing neural super network</title><author>Yaghi, K.A. ; Abu-Dawwas, W.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c36a806314bb4493b178a44feeaa53cac10454529976e91ec2da79054acb4e0c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial neural networks</topic><topic>Automated Control System (ACS)</topic><topic>Automatic control</topic><topic>Cathode ray tubes</topic><topic>Complex Recycling Technical Systems (CRTS)</topic><topic>Control systems</topic><topic>Information representation</topic><topic>Management information systems</topic><topic>Neural Network (NN)</topic><topic>Neural networks</topic><topic>Neural Super-Network</topic><topic>Optical computing</topic><topic>Predictive models</topic><topic>Recycling</topic><toplevel>online_resources</toplevel><creatorcontrib>Yaghi, K.A.</creatorcontrib><creatorcontrib>Abu-Dawwas, W.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yaghi, K.A.</au><au>Abu-Dawwas, W.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A proposed life cycle forecasting model of complex recycling technical systems by implementing neural super network</atitle><btitle>2009 First International Conference on Networked Digital Technologies</btitle><stitle>NDT</stitle><date>2009-07</date><risdate>2009</risdate><spage>482</spage><epage>484</epage><pages>482-484</pages><issn>2155-8728</issn><isbn>1424446147</isbn><isbn>9781424446148</isbn><eisbn>1424446155</eisbn><eisbn>9781424446155</eisbn><abstract>The purpose of this paper is to increase the efficiency of functionality and reliability of complex recycling technical systems (CRTS) community, through improving the control quality of their life cycle. Automated control system (ACS) on the basis of neural super-network learning for forecasting damages and ensuring its information representation for learning was proposed. In the paper it was suggested an architecture and a method of learning of a neural super-network for forecasting the progress of CRTS community life cycle.</abstract><pub>IEEE</pub><doi>10.1109/NDT.2009.5272222</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2155-8728
ispartof 2009 First International Conference on Networked Digital Technologies, 2009, p.482-484
issn 2155-8728
language eng
recordid cdi_ieee_primary_5272222
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Automated Control System (ACS)
Automatic control
Cathode ray tubes
Complex Recycling Technical Systems (CRTS)
Control systems
Information representation
Management information systems
Neural Network (NN)
Neural networks
Neural Super-Network
Optical computing
Predictive models
Recycling
title A proposed life cycle forecasting model of complex recycling technical systems by implementing neural super network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20proposed%20life%20cycle%20forecasting%20model%20of%20complex%20recycling%20technical%20systems%20by%20implementing%20neural%20super%20network&rft.btitle=2009%20First%20International%20Conference%20on%20Networked%20Digital%20Technologies&rft.au=Yaghi,%20K.A.&rft.date=2009-07&rft.spage=482&rft.epage=484&rft.pages=482-484&rft.issn=2155-8728&rft.isbn=1424446147&rft.isbn_list=9781424446148&rft_id=info:doi/10.1109/NDT.2009.5272222&rft_dat=%3Cieee_6IE%3E5272222%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424446155&rft.eisbn_list=9781424446155&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5272222&rfr_iscdi=true