User identification across multiple social networks

Today, more and more people have their virtual identities on the Web. It is common that people are users of more than one social network and also their friends may be registered on multiple web sites. A facility to aggregate our online friends into a single integrated environment would enable the us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vosecky, J., Dan Hong, Shen, V.Y.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 365
container_issue
container_start_page 360
container_title
container_volume
creator Vosecky, J.
Dan Hong
Shen, V.Y.
description Today, more and more people have their virtual identities on the Web. It is common that people are users of more than one social network and also their friends may be registered on multiple web sites. A facility to aggregate our online friends into a single integrated environment would enable the user to keep up-to-date with their virtual contacts more easily, as well as to provide improved facility to search for people across different websites. In this paper, we propose a method to identify users based on profile matching. We use data from two popular social networks to study the similarity of profile definition. We evaluate the importance of fields in the web profile and develop a profile comparison tool. We demonstrate the effectiveness and efficiency of our tool in identifying and consolidating duplicated users on different websites.
doi_str_mv 10.1109/NDT.2009.5272173
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5272173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5272173</ieee_id><sourcerecordid>5272173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-eb86e6d3be8a58f68ebb6adb743a241bf584b7b2adbb4a3eae9a53236356d9a63</originalsourceid><addsrcrecordid>eNpFj0tLw0AUhUe0YFu7F9zkDyTO3DuvLKU-obSbdl3uJDcwmiYlExH_vRULrg7ng-_AEeJWyUIpWd6vH7cFSFkWBhwohxdipjRora0y5vK_aHclpnBiuXfgJ2L2K5VSg5XXYpHSu5QSQaK2OBW4SzxkseZujE2saIx9l1E19Cllh892jMeWs9RXkdqs4_GrHz7SjZg01CZenHMuds9P2-Vrvtq8vC0fVnkFAGPOwVu2NQb2ZHxjPYdgqQ5OI4FWoTFeBxfghIImZOKSDAJaNLYuyeJc3P3tRmbeH4d4oOF7f36PP2hbSjc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>User identification across multiple social networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vosecky, J. ; Dan Hong ; Shen, V.Y.</creator><creatorcontrib>Vosecky, J. ; Dan Hong ; Shen, V.Y.</creatorcontrib><description>Today, more and more people have their virtual identities on the Web. It is common that people are users of more than one social network and also their friends may be registered on multiple web sites. A facility to aggregate our online friends into a single integrated environment would enable the user to keep up-to-date with their virtual contacts more easily, as well as to provide improved facility to search for people across different websites. In this paper, we propose a method to identify users based on profile matching. We use data from two popular social networks to study the similarity of profile definition. We evaluate the importance of fields in the web profile and develop a profile comparison tool. We demonstrate the effectiveness and efficiency of our tool in identifying and consolidating duplicated users on different websites.</description><identifier>ISSN: 2155-8728</identifier><identifier>ISBN: 1424446147</identifier><identifier>ISBN: 9781424446148</identifier><identifier>EISBN: 1424446155</identifier><identifier>EISBN: 9781424446155</identifier><identifier>DOI: 10.1109/NDT.2009.5272173</identifier><identifier>LCCN: 2009904260</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Electronic mail ; Facebook ; Manganese ; Testing ; Training</subject><ispartof>2009 First International Conference on Networked Digital Technologies, 2009, p.360-365</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-eb86e6d3be8a58f68ebb6adb743a241bf584b7b2adbb4a3eae9a53236356d9a63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5272173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5272173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vosecky, J.</creatorcontrib><creatorcontrib>Dan Hong</creatorcontrib><creatorcontrib>Shen, V.Y.</creatorcontrib><title>User identification across multiple social networks</title><title>2009 First International Conference on Networked Digital Technologies</title><addtitle>NDT</addtitle><description>Today, more and more people have their virtual identities on the Web. It is common that people are users of more than one social network and also their friends may be registered on multiple web sites. A facility to aggregate our online friends into a single integrated environment would enable the user to keep up-to-date with their virtual contacts more easily, as well as to provide improved facility to search for people across different websites. In this paper, we propose a method to identify users based on profile matching. We use data from two popular social networks to study the similarity of profile definition. We evaluate the importance of fields in the web profile and develop a profile comparison tool. We demonstrate the effectiveness and efficiency of our tool in identifying and consolidating duplicated users on different websites.</description><subject>Data mining</subject><subject>Electronic mail</subject><subject>Facebook</subject><subject>Manganese</subject><subject>Testing</subject><subject>Training</subject><issn>2155-8728</issn><isbn>1424446147</isbn><isbn>9781424446148</isbn><isbn>1424446155</isbn><isbn>9781424446155</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj0tLw0AUhUe0YFu7F9zkDyTO3DuvLKU-obSbdl3uJDcwmiYlExH_vRULrg7ng-_AEeJWyUIpWd6vH7cFSFkWBhwohxdipjRora0y5vK_aHclpnBiuXfgJ2L2K5VSg5XXYpHSu5QSQaK2OBW4SzxkseZujE2saIx9l1E19Cllh892jMeWs9RXkdqs4_GrHz7SjZg01CZenHMuds9P2-Vrvtq8vC0fVnkFAGPOwVu2NQb2ZHxjPYdgqQ5OI4FWoTFeBxfghIImZOKSDAJaNLYuyeJc3P3tRmbeH4d4oOF7f36PP2hbSjc</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Vosecky, J.</creator><creator>Dan Hong</creator><creator>Shen, V.Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>User identification across multiple social networks</title><author>Vosecky, J. ; Dan Hong ; Shen, V.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-eb86e6d3be8a58f68ebb6adb743a241bf584b7b2adbb4a3eae9a53236356d9a63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Data mining</topic><topic>Electronic mail</topic><topic>Facebook</topic><topic>Manganese</topic><topic>Testing</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Vosecky, J.</creatorcontrib><creatorcontrib>Dan Hong</creatorcontrib><creatorcontrib>Shen, V.Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vosecky, J.</au><au>Dan Hong</au><au>Shen, V.Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>User identification across multiple social networks</atitle><btitle>2009 First International Conference on Networked Digital Technologies</btitle><stitle>NDT</stitle><date>2009-07</date><risdate>2009</risdate><spage>360</spage><epage>365</epage><pages>360-365</pages><issn>2155-8728</issn><isbn>1424446147</isbn><isbn>9781424446148</isbn><eisbn>1424446155</eisbn><eisbn>9781424446155</eisbn><abstract>Today, more and more people have their virtual identities on the Web. It is common that people are users of more than one social network and also their friends may be registered on multiple web sites. A facility to aggregate our online friends into a single integrated environment would enable the user to keep up-to-date with their virtual contacts more easily, as well as to provide improved facility to search for people across different websites. In this paper, we propose a method to identify users based on profile matching. We use data from two popular social networks to study the similarity of profile definition. We evaluate the importance of fields in the web profile and develop a profile comparison tool. We demonstrate the effectiveness and efficiency of our tool in identifying and consolidating duplicated users on different websites.</abstract><pub>IEEE</pub><doi>10.1109/NDT.2009.5272173</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2155-8728
ispartof 2009 First International Conference on Networked Digital Technologies, 2009, p.360-365
issn 2155-8728
language eng
recordid cdi_ieee_primary_5272173
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data mining
Electronic mail
Facebook
Manganese
Testing
Training
title User identification across multiple social networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=User%20identification%20across%20multiple%20social%20networks&rft.btitle=2009%20First%20International%20Conference%20on%20Networked%20Digital%20Technologies&rft.au=Vosecky,%20J.&rft.date=2009-07&rft.spage=360&rft.epage=365&rft.pages=360-365&rft.issn=2155-8728&rft.isbn=1424446147&rft.isbn_list=9781424446148&rft_id=info:doi/10.1109/NDT.2009.5272173&rft_dat=%3Cieee_6IE%3E5272173%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424446155&rft.eisbn_list=9781424446155&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5272173&rfr_iscdi=true