User identification across multiple social networks
Today, more and more people have their virtual identities on the Web. It is common that people are users of more than one social network and also their friends may be registered on multiple web sites. A facility to aggregate our online friends into a single integrated environment would enable the us...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 365 |
---|---|
container_issue | |
container_start_page | 360 |
container_title | |
container_volume | |
creator | Vosecky, J. Dan Hong Shen, V.Y. |
description | Today, more and more people have their virtual identities on the Web. It is common that people are users of more than one social network and also their friends may be registered on multiple web sites. A facility to aggregate our online friends into a single integrated environment would enable the user to keep up-to-date with their virtual contacts more easily, as well as to provide improved facility to search for people across different websites. In this paper, we propose a method to identify users based on profile matching. We use data from two popular social networks to study the similarity of profile definition. We evaluate the importance of fields in the web profile and develop a profile comparison tool. We demonstrate the effectiveness and efficiency of our tool in identifying and consolidating duplicated users on different websites. |
doi_str_mv | 10.1109/NDT.2009.5272173 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5272173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5272173</ieee_id><sourcerecordid>5272173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-eb86e6d3be8a58f68ebb6adb743a241bf584b7b2adbb4a3eae9a53236356d9a63</originalsourceid><addsrcrecordid>eNpFj0tLw0AUhUe0YFu7F9zkDyTO3DuvLKU-obSbdl3uJDcwmiYlExH_vRULrg7ng-_AEeJWyUIpWd6vH7cFSFkWBhwohxdipjRora0y5vK_aHclpnBiuXfgJ2L2K5VSg5XXYpHSu5QSQaK2OBW4SzxkseZujE2saIx9l1E19Cllh892jMeWs9RXkdqs4_GrHz7SjZg01CZenHMuds9P2-Vrvtq8vC0fVnkFAGPOwVu2NQb2ZHxjPYdgqQ5OI4FWoTFeBxfghIImZOKSDAJaNLYuyeJc3P3tRmbeH4d4oOF7f36PP2hbSjc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>User identification across multiple social networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vosecky, J. ; Dan Hong ; Shen, V.Y.</creator><creatorcontrib>Vosecky, J. ; Dan Hong ; Shen, V.Y.</creatorcontrib><description>Today, more and more people have their virtual identities on the Web. It is common that people are users of more than one social network and also their friends may be registered on multiple web sites. A facility to aggregate our online friends into a single integrated environment would enable the user to keep up-to-date with their virtual contacts more easily, as well as to provide improved facility to search for people across different websites. In this paper, we propose a method to identify users based on profile matching. We use data from two popular social networks to study the similarity of profile definition. We evaluate the importance of fields in the web profile and develop a profile comparison tool. We demonstrate the effectiveness and efficiency of our tool in identifying and consolidating duplicated users on different websites.</description><identifier>ISSN: 2155-8728</identifier><identifier>ISBN: 1424446147</identifier><identifier>ISBN: 9781424446148</identifier><identifier>EISBN: 1424446155</identifier><identifier>EISBN: 9781424446155</identifier><identifier>DOI: 10.1109/NDT.2009.5272173</identifier><identifier>LCCN: 2009904260</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Electronic mail ; Facebook ; Manganese ; Testing ; Training</subject><ispartof>2009 First International Conference on Networked Digital Technologies, 2009, p.360-365</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-eb86e6d3be8a58f68ebb6adb743a241bf584b7b2adbb4a3eae9a53236356d9a63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5272173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5272173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vosecky, J.</creatorcontrib><creatorcontrib>Dan Hong</creatorcontrib><creatorcontrib>Shen, V.Y.</creatorcontrib><title>User identification across multiple social networks</title><title>2009 First International Conference on Networked Digital Technologies</title><addtitle>NDT</addtitle><description>Today, more and more people have their virtual identities on the Web. It is common that people are users of more than one social network and also their friends may be registered on multiple web sites. A facility to aggregate our online friends into a single integrated environment would enable the user to keep up-to-date with their virtual contacts more easily, as well as to provide improved facility to search for people across different websites. In this paper, we propose a method to identify users based on profile matching. We use data from two popular social networks to study the similarity of profile definition. We evaluate the importance of fields in the web profile and develop a profile comparison tool. We demonstrate the effectiveness and efficiency of our tool in identifying and consolidating duplicated users on different websites.</description><subject>Data mining</subject><subject>Electronic mail</subject><subject>Facebook</subject><subject>Manganese</subject><subject>Testing</subject><subject>Training</subject><issn>2155-8728</issn><isbn>1424446147</isbn><isbn>9781424446148</isbn><isbn>1424446155</isbn><isbn>9781424446155</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj0tLw0AUhUe0YFu7F9zkDyTO3DuvLKU-obSbdl3uJDcwmiYlExH_vRULrg7ng-_AEeJWyUIpWd6vH7cFSFkWBhwohxdipjRora0y5vK_aHclpnBiuXfgJ2L2K5VSg5XXYpHSu5QSQaK2OBW4SzxkseZujE2saIx9l1E19Cllh892jMeWs9RXkdqs4_GrHz7SjZg01CZenHMuds9P2-Vrvtq8vC0fVnkFAGPOwVu2NQb2ZHxjPYdgqQ5OI4FWoTFeBxfghIImZOKSDAJaNLYuyeJc3P3tRmbeH4d4oOF7f36PP2hbSjc</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Vosecky, J.</creator><creator>Dan Hong</creator><creator>Shen, V.Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>User identification across multiple social networks</title><author>Vosecky, J. ; Dan Hong ; Shen, V.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-eb86e6d3be8a58f68ebb6adb743a241bf584b7b2adbb4a3eae9a53236356d9a63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Data mining</topic><topic>Electronic mail</topic><topic>Facebook</topic><topic>Manganese</topic><topic>Testing</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Vosecky, J.</creatorcontrib><creatorcontrib>Dan Hong</creatorcontrib><creatorcontrib>Shen, V.Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vosecky, J.</au><au>Dan Hong</au><au>Shen, V.Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>User identification across multiple social networks</atitle><btitle>2009 First International Conference on Networked Digital Technologies</btitle><stitle>NDT</stitle><date>2009-07</date><risdate>2009</risdate><spage>360</spage><epage>365</epage><pages>360-365</pages><issn>2155-8728</issn><isbn>1424446147</isbn><isbn>9781424446148</isbn><eisbn>1424446155</eisbn><eisbn>9781424446155</eisbn><abstract>Today, more and more people have their virtual identities on the Web. It is common that people are users of more than one social network and also their friends may be registered on multiple web sites. A facility to aggregate our online friends into a single integrated environment would enable the user to keep up-to-date with their virtual contacts more easily, as well as to provide improved facility to search for people across different websites. In this paper, we propose a method to identify users based on profile matching. We use data from two popular social networks to study the similarity of profile definition. We evaluate the importance of fields in the web profile and develop a profile comparison tool. We demonstrate the effectiveness and efficiency of our tool in identifying and consolidating duplicated users on different websites.</abstract><pub>IEEE</pub><doi>10.1109/NDT.2009.5272173</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2155-8728 |
ispartof | 2009 First International Conference on Networked Digital Technologies, 2009, p.360-365 |
issn | 2155-8728 |
language | eng |
recordid | cdi_ieee_primary_5272173 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data mining Electronic mail Manganese Testing Training |
title | User identification across multiple social networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=User%20identification%20across%20multiple%20social%20networks&rft.btitle=2009%20First%20International%20Conference%20on%20Networked%20Digital%20Technologies&rft.au=Vosecky,%20J.&rft.date=2009-07&rft.spage=360&rft.epage=365&rft.pages=360-365&rft.issn=2155-8728&rft.isbn=1424446147&rft.isbn_list=9781424446148&rft_id=info:doi/10.1109/NDT.2009.5272173&rft_dat=%3Cieee_6IE%3E5272173%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424446155&rft.eisbn_list=9781424446155&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5272173&rfr_iscdi=true |