Learning classification rules based on concept semilattice
Concept lattice is an efficient formal tool for data analysis and knowledge extraction. In this paper, we present an incremental construction algorithm of join-semilattice with a simple example and a novel induction algorithm, rulextracter, which induces classification rules using a semilattice as a...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224 |
---|---|
container_issue | |
container_start_page | 221 |
container_title | |
container_volume | 3 |
creator | Chengming Qi Shoumei Cui Yunchuan Sun |
description | Concept lattice is an efficient formal tool for data analysis and knowledge extraction. In this paper, we present an incremental construction algorithm of join-semilattice with a simple example and a novel induction algorithm, rulextracter, which induces classification rules using a semilattice as an explicit map through the search space of rules. Furthermore, our learning system is shown to be robust in the presence of noisy data. The rulextracter system is also capable of learning both decision lists as well as unordered rule sets and thus allows for comparisons of these different learning paradigms within the same algorithmic framework. |
doi_str_mv | 10.1109/CCCM.2009.5267891 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5267891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5267891</ieee_id><sourcerecordid>5267891</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9fa47cc26a5c0f6a158faefcf09521e2781bcfbc9c503224b7ba2a19ae906edd3</originalsourceid><addsrcrecordid>eNotT8tKxEAQHNAF1zUfIF7yA1m7JzOZtDcJviDiRc9LZ9IjI9nskokH_96Ie6gqCoqiSqlrhC0i0G3TNK9bDUBbqytXE56pjFyNRhuzwNXnaq3RmoIqLFfq8i9KsLC-UFlKXwBQYk2kca3uWuFpjONn7gdOKYboeY6HMZ--B0l5x0n6fLH-MHo5znmSfRx4nqOXK7UKPCTJTrpRH48P781z0b49vTT3bRHR2bmgwMZ5ryu2HkLFaOvAEnwAshpFL8M7HzpP3kKptelcx5qRWAgq6ftyo27-e6OI7I5T3PP0sztdL38BOxtLaw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning classification rules based on concept semilattice</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chengming Qi ; Shoumei Cui ; Yunchuan Sun</creator><creatorcontrib>Chengming Qi ; Shoumei Cui ; Yunchuan Sun</creatorcontrib><description>Concept lattice is an efficient formal tool for data analysis and knowledge extraction. In this paper, we present an incremental construction algorithm of join-semilattice with a simple example and a novel induction algorithm, rulextracter, which induces classification rules using a semilattice as an explicit map through the search space of rules. Furthermore, our learning system is shown to be robust in the presence of noisy data. The rulextracter system is also capable of learning both decision lists as well as unordered rule sets and thus allows for comparisons of these different learning paradigms within the same algorithmic framework.</description><identifier>ISSN: 2154-9613</identifier><identifier>ISBN: 9781424442478</identifier><identifier>ISBN: 1424442478</identifier><identifier>DOI: 10.1109/CCCM.2009.5267891</identifier><identifier>LCCN: 2009902002</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communication system control ; Concept semilattice ; Data analysis ; Data mining ; Electronic mail ; Formal concept analysis (FCA) ; Incremental formation ; Knowledge acquisition ; Lattices ; Learning systems ; Robustness ; Rules extraction ; Software engineering ; Sun</subject><ispartof>2009 ISECS International Colloquium on Computing, Communication, Control, and Management, 2009, Vol.3, p.221-224</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5267891$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5267891$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chengming Qi</creatorcontrib><creatorcontrib>Shoumei Cui</creatorcontrib><creatorcontrib>Yunchuan Sun</creatorcontrib><title>Learning classification rules based on concept semilattice</title><title>2009 ISECS International Colloquium on Computing, Communication, Control, and Management</title><addtitle>CCCM</addtitle><description>Concept lattice is an efficient formal tool for data analysis and knowledge extraction. In this paper, we present an incremental construction algorithm of join-semilattice with a simple example and a novel induction algorithm, rulextracter, which induces classification rules using a semilattice as an explicit map through the search space of rules. Furthermore, our learning system is shown to be robust in the presence of noisy data. The rulextracter system is also capable of learning both decision lists as well as unordered rule sets and thus allows for comparisons of these different learning paradigms within the same algorithmic framework.</description><subject>Communication system control</subject><subject>Concept semilattice</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Electronic mail</subject><subject>Formal concept analysis (FCA)</subject><subject>Incremental formation</subject><subject>Knowledge acquisition</subject><subject>Lattices</subject><subject>Learning systems</subject><subject>Robustness</subject><subject>Rules extraction</subject><subject>Software engineering</subject><subject>Sun</subject><issn>2154-9613</issn><isbn>9781424442478</isbn><isbn>1424442478</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT8tKxEAQHNAF1zUfIF7yA1m7JzOZtDcJviDiRc9LZ9IjI9nskokH_96Ie6gqCoqiSqlrhC0i0G3TNK9bDUBbqytXE56pjFyNRhuzwNXnaq3RmoIqLFfq8i9KsLC-UFlKXwBQYk2kca3uWuFpjONn7gdOKYboeY6HMZ--B0l5x0n6fLH-MHo5znmSfRx4nqOXK7UKPCTJTrpRH48P781z0b49vTT3bRHR2bmgwMZ5ryu2HkLFaOvAEnwAshpFL8M7HzpP3kKptelcx5qRWAgq6ftyo27-e6OI7I5T3PP0sztdL38BOxtLaw</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Chengming Qi</creator><creator>Shoumei Cui</creator><creator>Yunchuan Sun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>Learning classification rules based on concept semilattice</title><author>Chengming Qi ; Shoumei Cui ; Yunchuan Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9fa47cc26a5c0f6a158faefcf09521e2781bcfbc9c503224b7ba2a19ae906edd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Communication system control</topic><topic>Concept semilattice</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Electronic mail</topic><topic>Formal concept analysis (FCA)</topic><topic>Incremental formation</topic><topic>Knowledge acquisition</topic><topic>Lattices</topic><topic>Learning systems</topic><topic>Robustness</topic><topic>Rules extraction</topic><topic>Software engineering</topic><topic>Sun</topic><toplevel>online_resources</toplevel><creatorcontrib>Chengming Qi</creatorcontrib><creatorcontrib>Shoumei Cui</creatorcontrib><creatorcontrib>Yunchuan Sun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chengming Qi</au><au>Shoumei Cui</au><au>Yunchuan Sun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning classification rules based on concept semilattice</atitle><btitle>2009 ISECS International Colloquium on Computing, Communication, Control, and Management</btitle><stitle>CCCM</stitle><date>2009-08</date><risdate>2009</risdate><volume>3</volume><spage>221</spage><epage>224</epage><pages>221-224</pages><issn>2154-9613</issn><isbn>9781424442478</isbn><isbn>1424442478</isbn><abstract>Concept lattice is an efficient formal tool for data analysis and knowledge extraction. In this paper, we present an incremental construction algorithm of join-semilattice with a simple example and a novel induction algorithm, rulextracter, which induces classification rules using a semilattice as an explicit map through the search space of rules. Furthermore, our learning system is shown to be robust in the presence of noisy data. The rulextracter system is also capable of learning both decision lists as well as unordered rule sets and thus allows for comparisons of these different learning paradigms within the same algorithmic framework.</abstract><pub>IEEE</pub><doi>10.1109/CCCM.2009.5267891</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2154-9613 |
ispartof | 2009 ISECS International Colloquium on Computing, Communication, Control, and Management, 2009, Vol.3, p.221-224 |
issn | 2154-9613 |
language | eng |
recordid | cdi_ieee_primary_5267891 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Communication system control Concept semilattice Data analysis Data mining Electronic mail Formal concept analysis (FCA) Incremental formation Knowledge acquisition Lattices Learning systems Robustness Rules extraction Software engineering Sun |
title | Learning classification rules based on concept semilattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20classification%20rules%20based%20on%20concept%20semilattice&rft.btitle=2009%20ISECS%20International%20Colloquium%20on%20Computing,%20Communication,%20Control,%20and%20Management&rft.au=Chengming%20Qi&rft.date=2009-08&rft.volume=3&rft.spage=221&rft.epage=224&rft.pages=221-224&rft.issn=2154-9613&rft.isbn=9781424442478&rft.isbn_list=1424442478&rft_id=info:doi/10.1109/CCCM.2009.5267891&rft_dat=%3Cieee_6IE%3E5267891%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5267891&rfr_iscdi=true |