Regularized Recurrent Least Squares Support Vector Machines
Support vector machines are widely used for classification and regression tasks. They provide reliable static models, but their extension to the training of dynamic models is still an open problem. In the present paper, we describe regularized recurrent support vector machines, which, in contrast to...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 511 |
---|---|
container_issue | |
container_start_page | 508 |
container_title | |
container_volume | |
creator | Haini Qu Oussar, Y. Dreyfus, G. Weisheng Xu |
description | Support vector machines are widely used for classification and regression tasks. They provide reliable static models, but their extension to the training of dynamic models is still an open problem. In the present paper, we describe regularized recurrent support vector machines, which, in contrast to previous recurrent support vector machine, models, allow the design of dynamical models while retaining the built-in regularization mechanism present in support vector machines. The principle is validated on academic examples, it is shown that the results compare favorably to those obtained by unregularized recurrent support vector machines and to regularized, partially recurrent support vector machines. |
doi_str_mv | 10.1109/IJCBS.2009.58 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5260436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5260436</ieee_id><sourcerecordid>5260436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-ed5999621ba0ddaa5ee297c62750c3b63198b087b7c0e1773b234037a6c3424a3</originalsourceid><addsrcrecordid>eNotzMtKw0AUgOEBKWhrl67czAsknrnn4EqDl0pEaNRtmZkcNVLbOJMs9OlFdPXDt_gZOxFQCgF4trqrL9tSAmBpqgM2B2fRKKdQzNj8lxE0oDhky5zfAUCgdUaLI3a-ptdp61P_TR1fU5xSot3IG_J55O3n5BNl3k7DsE8jf6Y47hO_9_Gt31E-ZrMXv820_O-CPV1fPda3RfNws6ovmiJKgWNBnUFEK0Xw0HXeGyKJLlrpDEQVrBJYBahccBFIOKeCVBqU8zYqLbVXC3b69-2JaDOk_sOnr42RFrSy6ge06Eav</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Regularized Recurrent Least Squares Support Vector Machines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haini Qu ; Oussar, Y. ; Dreyfus, G. ; Weisheng Xu</creator><creatorcontrib>Haini Qu ; Oussar, Y. ; Dreyfus, G. ; Weisheng Xu</creatorcontrib><description>Support vector machines are widely used for classification and regression tasks. They provide reliable static models, but their extension to the training of dynamic models is still an open problem. In the present paper, we describe regularized recurrent support vector machines, which, in contrast to previous recurrent support vector machine, models, allow the design of dynamical models while retaining the built-in regularization mechanism present in support vector machines. The principle is validated on academic examples, it is shown that the results compare favorably to those obtained by unregularized recurrent support vector machines and to regularized, partially recurrent support vector machines.</description><identifier>ISBN: 0769537391</identifier><identifier>ISBN: 9780769537399</identifier><identifier>DOI: 10.1109/IJCBS.2009.58</identifier><identifier>LCCN: 2009904091</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; dynamic systems ; Equations ; Intelligent systems ; Least squares methods ; Machine intelligence ; machine learning ; modeling ; Predictive models ; recurrent least squares support vector machines ; Support vector machine classification ; Support vector machines ; Systems biology ; Time measurement</subject><ispartof>2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, 2009, p.508-511</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-ed5999621ba0ddaa5ee297c62750c3b63198b087b7c0e1773b234037a6c3424a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5260436$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5260436$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haini Qu</creatorcontrib><creatorcontrib>Oussar, Y.</creatorcontrib><creatorcontrib>Dreyfus, G.</creatorcontrib><creatorcontrib>Weisheng Xu</creatorcontrib><title>Regularized Recurrent Least Squares Support Vector Machines</title><title>2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing</title><addtitle>IJCBS</addtitle><description>Support vector machines are widely used for classification and regression tasks. They provide reliable static models, but their extension to the training of dynamic models is still an open problem. In the present paper, we describe regularized recurrent support vector machines, which, in contrast to previous recurrent support vector machine, models, allow the design of dynamical models while retaining the built-in regularization mechanism present in support vector machines. The principle is validated on academic examples, it is shown that the results compare favorably to those obtained by unregularized recurrent support vector machines and to regularized, partially recurrent support vector machines.</description><subject>Bioinformatics</subject><subject>dynamic systems</subject><subject>Equations</subject><subject>Intelligent systems</subject><subject>Least squares methods</subject><subject>Machine intelligence</subject><subject>machine learning</subject><subject>modeling</subject><subject>Predictive models</subject><subject>recurrent least squares support vector machines</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Systems biology</subject><subject>Time measurement</subject><isbn>0769537391</isbn><isbn>9780769537399</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzMtKw0AUgOEBKWhrl67czAsknrnn4EqDl0pEaNRtmZkcNVLbOJMs9OlFdPXDt_gZOxFQCgF4trqrL9tSAmBpqgM2B2fRKKdQzNj8lxE0oDhky5zfAUCgdUaLI3a-ptdp61P_TR1fU5xSot3IG_J55O3n5BNl3k7DsE8jf6Y47hO_9_Gt31E-ZrMXv820_O-CPV1fPda3RfNws6ovmiJKgWNBnUFEK0Xw0HXeGyKJLlrpDEQVrBJYBahccBFIOKeCVBqU8zYqLbVXC3b69-2JaDOk_sOnr42RFrSy6ge06Eav</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Haini Qu</creator><creator>Oussar, Y.</creator><creator>Dreyfus, G.</creator><creator>Weisheng Xu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>Regularized Recurrent Least Squares Support Vector Machines</title><author>Haini Qu ; Oussar, Y. ; Dreyfus, G. ; Weisheng Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-ed5999621ba0ddaa5ee297c62750c3b63198b087b7c0e1773b234037a6c3424a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bioinformatics</topic><topic>dynamic systems</topic><topic>Equations</topic><topic>Intelligent systems</topic><topic>Least squares methods</topic><topic>Machine intelligence</topic><topic>machine learning</topic><topic>modeling</topic><topic>Predictive models</topic><topic>recurrent least squares support vector machines</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Systems biology</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Haini Qu</creatorcontrib><creatorcontrib>Oussar, Y.</creatorcontrib><creatorcontrib>Dreyfus, G.</creatorcontrib><creatorcontrib>Weisheng Xu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haini Qu</au><au>Oussar, Y.</au><au>Dreyfus, G.</au><au>Weisheng Xu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Regularized Recurrent Least Squares Support Vector Machines</atitle><btitle>2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing</btitle><stitle>IJCBS</stitle><date>2009-08</date><risdate>2009</risdate><spage>508</spage><epage>511</epage><pages>508-511</pages><isbn>0769537391</isbn><isbn>9780769537399</isbn><abstract>Support vector machines are widely used for classification and regression tasks. They provide reliable static models, but their extension to the training of dynamic models is still an open problem. In the present paper, we describe regularized recurrent support vector machines, which, in contrast to previous recurrent support vector machine, models, allow the design of dynamical models while retaining the built-in regularization mechanism present in support vector machines. The principle is validated on academic examples, it is shown that the results compare favorably to those obtained by unregularized recurrent support vector machines and to regularized, partially recurrent support vector machines.</abstract><pub>IEEE</pub><doi>10.1109/IJCBS.2009.58</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769537391 |
ispartof | 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, 2009, p.508-511 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5260436 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bioinformatics dynamic systems Equations Intelligent systems Least squares methods Machine intelligence machine learning modeling Predictive models recurrent least squares support vector machines Support vector machine classification Support vector machines Systems biology Time measurement |
title | Regularized Recurrent Least Squares Support Vector Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Regularized%20Recurrent%20Least%20Squares%20Support%20Vector%20Machines&rft.btitle=2009%20International%20Joint%20Conference%20on%20Bioinformatics,%20Systems%20Biology%20and%20Intelligent%20Computing&rft.au=Haini%20Qu&rft.date=2009-08&rft.spage=508&rft.epage=511&rft.pages=508-511&rft.isbn=0769537391&rft.isbn_list=9780769537399&rft_id=info:doi/10.1109/IJCBS.2009.58&rft_dat=%3Cieee_6IE%3E5260436%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5260436&rfr_iscdi=true |