Regularized Recurrent Least Squares Support Vector Machines

Support vector machines are widely used for classification and regression tasks. They provide reliable static models, but their extension to the training of dynamic models is still an open problem. In the present paper, we describe regularized recurrent support vector machines, which, in contrast to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haini Qu, Oussar, Y., Dreyfus, G., Weisheng Xu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 511
container_issue
container_start_page 508
container_title
container_volume
creator Haini Qu
Oussar, Y.
Dreyfus, G.
Weisheng Xu
description Support vector machines are widely used for classification and regression tasks. They provide reliable static models, but their extension to the training of dynamic models is still an open problem. In the present paper, we describe regularized recurrent support vector machines, which, in contrast to previous recurrent support vector machine, models, allow the design of dynamical models while retaining the built-in regularization mechanism present in support vector machines. The principle is validated on academic examples, it is shown that the results compare favorably to those obtained by unregularized recurrent support vector machines and to regularized, partially recurrent support vector machines.
doi_str_mv 10.1109/IJCBS.2009.58
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5260436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5260436</ieee_id><sourcerecordid>5260436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-ed5999621ba0ddaa5ee297c62750c3b63198b087b7c0e1773b234037a6c3424a3</originalsourceid><addsrcrecordid>eNotzMtKw0AUgOEBKWhrl67czAsknrnn4EqDl0pEaNRtmZkcNVLbOJMs9OlFdPXDt_gZOxFQCgF4trqrL9tSAmBpqgM2B2fRKKdQzNj8lxE0oDhky5zfAUCgdUaLI3a-ptdp61P_TR1fU5xSot3IG_J55O3n5BNl3k7DsE8jf6Y47hO_9_Gt31E-ZrMXv820_O-CPV1fPda3RfNws6ovmiJKgWNBnUFEK0Xw0HXeGyKJLlrpDEQVrBJYBahccBFIOKeCVBqU8zYqLbVXC3b69-2JaDOk_sOnr42RFrSy6ge06Eav</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Regularized Recurrent Least Squares Support Vector Machines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haini Qu ; Oussar, Y. ; Dreyfus, G. ; Weisheng Xu</creator><creatorcontrib>Haini Qu ; Oussar, Y. ; Dreyfus, G. ; Weisheng Xu</creatorcontrib><description>Support vector machines are widely used for classification and regression tasks. They provide reliable static models, but their extension to the training of dynamic models is still an open problem. In the present paper, we describe regularized recurrent support vector machines, which, in contrast to previous recurrent support vector machine, models, allow the design of dynamical models while retaining the built-in regularization mechanism present in support vector machines. The principle is validated on academic examples, it is shown that the results compare favorably to those obtained by unregularized recurrent support vector machines and to regularized, partially recurrent support vector machines.</description><identifier>ISBN: 0769537391</identifier><identifier>ISBN: 9780769537399</identifier><identifier>DOI: 10.1109/IJCBS.2009.58</identifier><identifier>LCCN: 2009904091</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; dynamic systems ; Equations ; Intelligent systems ; Least squares methods ; Machine intelligence ; machine learning ; modeling ; Predictive models ; recurrent least squares support vector machines ; Support vector machine classification ; Support vector machines ; Systems biology ; Time measurement</subject><ispartof>2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, 2009, p.508-511</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-ed5999621ba0ddaa5ee297c62750c3b63198b087b7c0e1773b234037a6c3424a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5260436$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5260436$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haini Qu</creatorcontrib><creatorcontrib>Oussar, Y.</creatorcontrib><creatorcontrib>Dreyfus, G.</creatorcontrib><creatorcontrib>Weisheng Xu</creatorcontrib><title>Regularized Recurrent Least Squares Support Vector Machines</title><title>2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing</title><addtitle>IJCBS</addtitle><description>Support vector machines are widely used for classification and regression tasks. They provide reliable static models, but their extension to the training of dynamic models is still an open problem. In the present paper, we describe regularized recurrent support vector machines, which, in contrast to previous recurrent support vector machine, models, allow the design of dynamical models while retaining the built-in regularization mechanism present in support vector machines. The principle is validated on academic examples, it is shown that the results compare favorably to those obtained by unregularized recurrent support vector machines and to regularized, partially recurrent support vector machines.</description><subject>Bioinformatics</subject><subject>dynamic systems</subject><subject>Equations</subject><subject>Intelligent systems</subject><subject>Least squares methods</subject><subject>Machine intelligence</subject><subject>machine learning</subject><subject>modeling</subject><subject>Predictive models</subject><subject>recurrent least squares support vector machines</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Systems biology</subject><subject>Time measurement</subject><isbn>0769537391</isbn><isbn>9780769537399</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzMtKw0AUgOEBKWhrl67czAsknrnn4EqDl0pEaNRtmZkcNVLbOJMs9OlFdPXDt_gZOxFQCgF4trqrL9tSAmBpqgM2B2fRKKdQzNj8lxE0oDhky5zfAUCgdUaLI3a-ptdp61P_TR1fU5xSot3IG_J55O3n5BNl3k7DsE8jf6Y47hO_9_Gt31E-ZrMXv820_O-CPV1fPda3RfNws6ovmiJKgWNBnUFEK0Xw0HXeGyKJLlrpDEQVrBJYBahccBFIOKeCVBqU8zYqLbVXC3b69-2JaDOk_sOnr42RFrSy6ge06Eav</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Haini Qu</creator><creator>Oussar, Y.</creator><creator>Dreyfus, G.</creator><creator>Weisheng Xu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>Regularized Recurrent Least Squares Support Vector Machines</title><author>Haini Qu ; Oussar, Y. ; Dreyfus, G. ; Weisheng Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-ed5999621ba0ddaa5ee297c62750c3b63198b087b7c0e1773b234037a6c3424a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bioinformatics</topic><topic>dynamic systems</topic><topic>Equations</topic><topic>Intelligent systems</topic><topic>Least squares methods</topic><topic>Machine intelligence</topic><topic>machine learning</topic><topic>modeling</topic><topic>Predictive models</topic><topic>recurrent least squares support vector machines</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Systems biology</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Haini Qu</creatorcontrib><creatorcontrib>Oussar, Y.</creatorcontrib><creatorcontrib>Dreyfus, G.</creatorcontrib><creatorcontrib>Weisheng Xu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haini Qu</au><au>Oussar, Y.</au><au>Dreyfus, G.</au><au>Weisheng Xu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Regularized Recurrent Least Squares Support Vector Machines</atitle><btitle>2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing</btitle><stitle>IJCBS</stitle><date>2009-08</date><risdate>2009</risdate><spage>508</spage><epage>511</epage><pages>508-511</pages><isbn>0769537391</isbn><isbn>9780769537399</isbn><abstract>Support vector machines are widely used for classification and regression tasks. They provide reliable static models, but their extension to the training of dynamic models is still an open problem. In the present paper, we describe regularized recurrent support vector machines, which, in contrast to previous recurrent support vector machine, models, allow the design of dynamical models while retaining the built-in regularization mechanism present in support vector machines. The principle is validated on academic examples, it is shown that the results compare favorably to those obtained by unregularized recurrent support vector machines and to regularized, partially recurrent support vector machines.</abstract><pub>IEEE</pub><doi>10.1109/IJCBS.2009.58</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769537391
ispartof 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, 2009, p.508-511
issn
language eng
recordid cdi_ieee_primary_5260436
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bioinformatics
dynamic systems
Equations
Intelligent systems
Least squares methods
Machine intelligence
machine learning
modeling
Predictive models
recurrent least squares support vector machines
Support vector machine classification
Support vector machines
Systems biology
Time measurement
title Regularized Recurrent Least Squares Support Vector Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Regularized%20Recurrent%20Least%20Squares%20Support%20Vector%20Machines&rft.btitle=2009%20International%20Joint%20Conference%20on%20Bioinformatics,%20Systems%20Biology%20and%20Intelligent%20Computing&rft.au=Haini%20Qu&rft.date=2009-08&rft.spage=508&rft.epage=511&rft.pages=508-511&rft.isbn=0769537391&rft.isbn_list=9780769537399&rft_id=info:doi/10.1109/IJCBS.2009.58&rft_dat=%3Cieee_6IE%3E5260436%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5260436&rfr_iscdi=true