Deconvolution of VLBI images based on compressive sensing
Direct inversion of incomplete visibility samples in VLBI (very large baseline interferometry) radio telescopes produces images with convolutive artifacts. Since proper analysis and interpretations of astronomical radio sources require a non-distorted image, and because filling all of sampling point...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116 |
---|---|
container_issue | |
container_start_page | 110 |
container_title | |
container_volume | 1 |
creator | Suksmono, A.B. |
description | Direct inversion of incomplete visibility samples in VLBI (very large baseline interferometry) radio telescopes produces images with convolutive artifacts. Since proper analysis and interpretations of astronomical radio sources require a non-distorted image, and because filling all of sampling points in the UV-plane is an impossible task, image deconvolution has been one of central issues in the VLBI imaging. Up to now, the most widely used deconvolution algorithms are based on least-squares-optimization and maximum entropy method. In this paper, we propose a new algorithm that is based on an emerging paradigm called compressive sensing (CS). Under the sparsity condition, CS capable to exactly reconstructs a signal or an image, using only a few number of random samples. We show that CS is well-suited with the VLBI imaging problem and demonstrate that the proposed method is capable to reconstruct a simulated image of radio galaxy from its incomplete visibility samples taken from elliptical trajectories in the uv-plane. The effectiveness of the proposed method is also demonstrated with an actual VLBI measured data of 3C459 asymmetric radio-galaxy observed by the VLA (very large array). |
doi_str_mv | 10.1109/ICEEI.2009.5254805 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5254805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5254805</ieee_id><sourcerecordid>5254805</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-7c2fe79d81288f05be1183cd73c80606e5a1653387eaef53f410fa735802824f3</originalsourceid><addsrcrecordid>eNo9kN1Kw0AUhBe1YFv7AnqzL5B6zv5l91Jj1EDAG_W2bJOzZaVNSrYWfHtTLF4NzDAfwzB2i7BEBHdfFWVZLQWAW2qhlQV9waYCtc6MlXDJZqiEUsqhtFf_gRATNjt1HBh0cM0WKX0BwAg0Tqgpc0_U9N2x334fYt_xPvDP-rHicec3lPjaJ2r56Df9bj9QSvFIPFGXYre5YZPgt4kWZ52zj-fyvXjN6reXqniosyjQHbK8EYFy11oU1gbQa0K0smlz2VgwYEh7NFpKm5OnoGVQCMHnUlsQVqgg5-zujxuJaLUfxmnDz-p8gfwFuzhKEQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deconvolution of VLBI images based on compressive sensing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Suksmono, A.B.</creator><creatorcontrib>Suksmono, A.B.</creatorcontrib><description>Direct inversion of incomplete visibility samples in VLBI (very large baseline interferometry) radio telescopes produces images with convolutive artifacts. Since proper analysis and interpretations of astronomical radio sources require a non-distorted image, and because filling all of sampling points in the UV-plane is an impossible task, image deconvolution has been one of central issues in the VLBI imaging. Up to now, the most widely used deconvolution algorithms are based on least-squares-optimization and maximum entropy method. In this paper, we propose a new algorithm that is based on an emerging paradigm called compressive sensing (CS). Under the sparsity condition, CS capable to exactly reconstructs a signal or an image, using only a few number of random samples. We show that CS is well-suited with the VLBI imaging problem and demonstrate that the proposed method is capable to reconstruct a simulated image of radio galaxy from its incomplete visibility samples taken from elliptical trajectories in the uv-plane. The effectiveness of the proposed method is also demonstrated with an actual VLBI measured data of 3C459 asymmetric radio-galaxy observed by the VLA (very large array).</description><identifier>ISSN: 2155-6822</identifier><identifier>ISBN: 1424449138</identifier><identifier>ISBN: 9781424449132</identifier><identifier>EISSN: 2155-6830</identifier><identifier>DOI: 10.1109/ICEEI.2009.5254805</identifier><identifier>LCCN: 2009906190</identifier><language>eng</language><publisher>IEEE</publisher><subject>basis pursuit ; CLEAN ; compressive sensing ; Deconvolution ; Entropy ; Extraterrestrial measurements ; Filling ; Image analysis ; Image coding ; Image reconstruction ; Image sampling ; Radio astronomy ; Radio interferometry ; synthesis imaging ; Very Large Array ; VLBI</subject><ispartof>2009 International Conference on Electrical Engineering and Informatics, 2009, Vol.1, p.110-116</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5254805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5254805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Suksmono, A.B.</creatorcontrib><title>Deconvolution of VLBI images based on compressive sensing</title><title>2009 International Conference on Electrical Engineering and Informatics</title><addtitle>ICEEI</addtitle><description>Direct inversion of incomplete visibility samples in VLBI (very large baseline interferometry) radio telescopes produces images with convolutive artifacts. Since proper analysis and interpretations of astronomical radio sources require a non-distorted image, and because filling all of sampling points in the UV-plane is an impossible task, image deconvolution has been one of central issues in the VLBI imaging. Up to now, the most widely used deconvolution algorithms are based on least-squares-optimization and maximum entropy method. In this paper, we propose a new algorithm that is based on an emerging paradigm called compressive sensing (CS). Under the sparsity condition, CS capable to exactly reconstructs a signal or an image, using only a few number of random samples. We show that CS is well-suited with the VLBI imaging problem and demonstrate that the proposed method is capable to reconstruct a simulated image of radio galaxy from its incomplete visibility samples taken from elliptical trajectories in the uv-plane. The effectiveness of the proposed method is also demonstrated with an actual VLBI measured data of 3C459 asymmetric radio-galaxy observed by the VLA (very large array).</description><subject>basis pursuit</subject><subject>CLEAN</subject><subject>compressive sensing</subject><subject>Deconvolution</subject><subject>Entropy</subject><subject>Extraterrestrial measurements</subject><subject>Filling</subject><subject>Image analysis</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>Image sampling</subject><subject>Radio astronomy</subject><subject>Radio interferometry</subject><subject>synthesis imaging</subject><subject>Very Large Array</subject><subject>VLBI</subject><issn>2155-6822</issn><issn>2155-6830</issn><isbn>1424449138</isbn><isbn>9781424449132</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kN1Kw0AUhBe1YFv7AnqzL5B6zv5l91Jj1EDAG_W2bJOzZaVNSrYWfHtTLF4NzDAfwzB2i7BEBHdfFWVZLQWAW2qhlQV9waYCtc6MlXDJZqiEUsqhtFf_gRATNjt1HBh0cM0WKX0BwAg0Tqgpc0_U9N2x334fYt_xPvDP-rHicec3lPjaJ2r56Df9bj9QSvFIPFGXYre5YZPgt4kWZ52zj-fyvXjN6reXqniosyjQHbK8EYFy11oU1gbQa0K0smlz2VgwYEh7NFpKm5OnoGVQCMHnUlsQVqgg5-zujxuJaLUfxmnDz-p8gfwFuzhKEQ</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Suksmono, A.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>Deconvolution of VLBI images based on compressive sensing</title><author>Suksmono, A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-7c2fe79d81288f05be1183cd73c80606e5a1653387eaef53f410fa735802824f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>basis pursuit</topic><topic>CLEAN</topic><topic>compressive sensing</topic><topic>Deconvolution</topic><topic>Entropy</topic><topic>Extraterrestrial measurements</topic><topic>Filling</topic><topic>Image analysis</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>Image sampling</topic><topic>Radio astronomy</topic><topic>Radio interferometry</topic><topic>synthesis imaging</topic><topic>Very Large Array</topic><topic>VLBI</topic><toplevel>online_resources</toplevel><creatorcontrib>Suksmono, A.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suksmono, A.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deconvolution of VLBI images based on compressive sensing</atitle><btitle>2009 International Conference on Electrical Engineering and Informatics</btitle><stitle>ICEEI</stitle><date>2009-08</date><risdate>2009</risdate><volume>1</volume><spage>110</spage><epage>116</epage><pages>110-116</pages><issn>2155-6822</issn><eissn>2155-6830</eissn><isbn>1424449138</isbn><isbn>9781424449132</isbn><abstract>Direct inversion of incomplete visibility samples in VLBI (very large baseline interferometry) radio telescopes produces images with convolutive artifacts. Since proper analysis and interpretations of astronomical radio sources require a non-distorted image, and because filling all of sampling points in the UV-plane is an impossible task, image deconvolution has been one of central issues in the VLBI imaging. Up to now, the most widely used deconvolution algorithms are based on least-squares-optimization and maximum entropy method. In this paper, we propose a new algorithm that is based on an emerging paradigm called compressive sensing (CS). Under the sparsity condition, CS capable to exactly reconstructs a signal or an image, using only a few number of random samples. We show that CS is well-suited with the VLBI imaging problem and demonstrate that the proposed method is capable to reconstruct a simulated image of radio galaxy from its incomplete visibility samples taken from elliptical trajectories in the uv-plane. The effectiveness of the proposed method is also demonstrated with an actual VLBI measured data of 3C459 asymmetric radio-galaxy observed by the VLA (very large array).</abstract><pub>IEEE</pub><doi>10.1109/ICEEI.2009.5254805</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2155-6822 |
ispartof | 2009 International Conference on Electrical Engineering and Informatics, 2009, Vol.1, p.110-116 |
issn | 2155-6822 2155-6830 |
language | eng |
recordid | cdi_ieee_primary_5254805 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | basis pursuit CLEAN compressive sensing Deconvolution Entropy Extraterrestrial measurements Filling Image analysis Image coding Image reconstruction Image sampling Radio astronomy Radio interferometry synthesis imaging Very Large Array VLBI |
title | Deconvolution of VLBI images based on compressive sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deconvolution%20of%20VLBI%20images%20based%20on%20compressive%20sensing&rft.btitle=2009%20International%20Conference%20on%20Electrical%20Engineering%20and%20Informatics&rft.au=Suksmono,%20A.B.&rft.date=2009-08&rft.volume=1&rft.spage=110&rft.epage=116&rft.pages=110-116&rft.issn=2155-6822&rft.eissn=2155-6830&rft.isbn=1424449138&rft.isbn_list=9781424449132&rft_id=info:doi/10.1109/ICEEI.2009.5254805&rft_dat=%3Cieee_6IE%3E5254805%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5254805&rfr_iscdi=true |