Deconvolution of VLBI images based on compressive sensing

Direct inversion of incomplete visibility samples in VLBI (very large baseline interferometry) radio telescopes produces images with convolutive artifacts. Since proper analysis and interpretations of astronomical radio sources require a non-distorted image, and because filling all of sampling point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Suksmono, A.B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue
container_start_page 110
container_title
container_volume 1
creator Suksmono, A.B.
description Direct inversion of incomplete visibility samples in VLBI (very large baseline interferometry) radio telescopes produces images with convolutive artifacts. Since proper analysis and interpretations of astronomical radio sources require a non-distorted image, and because filling all of sampling points in the UV-plane is an impossible task, image deconvolution has been one of central issues in the VLBI imaging. Up to now, the most widely used deconvolution algorithms are based on least-squares-optimization and maximum entropy method. In this paper, we propose a new algorithm that is based on an emerging paradigm called compressive sensing (CS). Under the sparsity condition, CS capable to exactly reconstructs a signal or an image, using only a few number of random samples. We show that CS is well-suited with the VLBI imaging problem and demonstrate that the proposed method is capable to reconstruct a simulated image of radio galaxy from its incomplete visibility samples taken from elliptical trajectories in the uv-plane. The effectiveness of the proposed method is also demonstrated with an actual VLBI measured data of 3C459 asymmetric radio-galaxy observed by the VLA (very large array).
doi_str_mv 10.1109/ICEEI.2009.5254805
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5254805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5254805</ieee_id><sourcerecordid>5254805</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-7c2fe79d81288f05be1183cd73c80606e5a1653387eaef53f410fa735802824f3</originalsourceid><addsrcrecordid>eNo9kN1Kw0AUhBe1YFv7AnqzL5B6zv5l91Jj1EDAG_W2bJOzZaVNSrYWfHtTLF4NzDAfwzB2i7BEBHdfFWVZLQWAW2qhlQV9waYCtc6MlXDJZqiEUsqhtFf_gRATNjt1HBh0cM0WKX0BwAg0Tqgpc0_U9N2x334fYt_xPvDP-rHicec3lPjaJ2r56Df9bj9QSvFIPFGXYre5YZPgt4kWZ52zj-fyvXjN6reXqniosyjQHbK8EYFy11oU1gbQa0K0smlz2VgwYEh7NFpKm5OnoGVQCMHnUlsQVqgg5-zujxuJaLUfxmnDz-p8gfwFuzhKEQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deconvolution of VLBI images based on compressive sensing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Suksmono, A.B.</creator><creatorcontrib>Suksmono, A.B.</creatorcontrib><description>Direct inversion of incomplete visibility samples in VLBI (very large baseline interferometry) radio telescopes produces images with convolutive artifacts. Since proper analysis and interpretations of astronomical radio sources require a non-distorted image, and because filling all of sampling points in the UV-plane is an impossible task, image deconvolution has been one of central issues in the VLBI imaging. Up to now, the most widely used deconvolution algorithms are based on least-squares-optimization and maximum entropy method. In this paper, we propose a new algorithm that is based on an emerging paradigm called compressive sensing (CS). Under the sparsity condition, CS capable to exactly reconstructs a signal or an image, using only a few number of random samples. We show that CS is well-suited with the VLBI imaging problem and demonstrate that the proposed method is capable to reconstruct a simulated image of radio galaxy from its incomplete visibility samples taken from elliptical trajectories in the uv-plane. The effectiveness of the proposed method is also demonstrated with an actual VLBI measured data of 3C459 asymmetric radio-galaxy observed by the VLA (very large array).</description><identifier>ISSN: 2155-6822</identifier><identifier>ISBN: 1424449138</identifier><identifier>ISBN: 9781424449132</identifier><identifier>EISSN: 2155-6830</identifier><identifier>DOI: 10.1109/ICEEI.2009.5254805</identifier><identifier>LCCN: 2009906190</identifier><language>eng</language><publisher>IEEE</publisher><subject>basis pursuit ; CLEAN ; compressive sensing ; Deconvolution ; Entropy ; Extraterrestrial measurements ; Filling ; Image analysis ; Image coding ; Image reconstruction ; Image sampling ; Radio astronomy ; Radio interferometry ; synthesis imaging ; Very Large Array ; VLBI</subject><ispartof>2009 International Conference on Electrical Engineering and Informatics, 2009, Vol.1, p.110-116</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5254805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5254805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Suksmono, A.B.</creatorcontrib><title>Deconvolution of VLBI images based on compressive sensing</title><title>2009 International Conference on Electrical Engineering and Informatics</title><addtitle>ICEEI</addtitle><description>Direct inversion of incomplete visibility samples in VLBI (very large baseline interferometry) radio telescopes produces images with convolutive artifacts. Since proper analysis and interpretations of astronomical radio sources require a non-distorted image, and because filling all of sampling points in the UV-plane is an impossible task, image deconvolution has been one of central issues in the VLBI imaging. Up to now, the most widely used deconvolution algorithms are based on least-squares-optimization and maximum entropy method. In this paper, we propose a new algorithm that is based on an emerging paradigm called compressive sensing (CS). Under the sparsity condition, CS capable to exactly reconstructs a signal or an image, using only a few number of random samples. We show that CS is well-suited with the VLBI imaging problem and demonstrate that the proposed method is capable to reconstruct a simulated image of radio galaxy from its incomplete visibility samples taken from elliptical trajectories in the uv-plane. The effectiveness of the proposed method is also demonstrated with an actual VLBI measured data of 3C459 asymmetric radio-galaxy observed by the VLA (very large array).</description><subject>basis pursuit</subject><subject>CLEAN</subject><subject>compressive sensing</subject><subject>Deconvolution</subject><subject>Entropy</subject><subject>Extraterrestrial measurements</subject><subject>Filling</subject><subject>Image analysis</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>Image sampling</subject><subject>Radio astronomy</subject><subject>Radio interferometry</subject><subject>synthesis imaging</subject><subject>Very Large Array</subject><subject>VLBI</subject><issn>2155-6822</issn><issn>2155-6830</issn><isbn>1424449138</isbn><isbn>9781424449132</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kN1Kw0AUhBe1YFv7AnqzL5B6zv5l91Jj1EDAG_W2bJOzZaVNSrYWfHtTLF4NzDAfwzB2i7BEBHdfFWVZLQWAW2qhlQV9waYCtc6MlXDJZqiEUsqhtFf_gRATNjt1HBh0cM0WKX0BwAg0Tqgpc0_U9N2x334fYt_xPvDP-rHicec3lPjaJ2r56Df9bj9QSvFIPFGXYre5YZPgt4kWZ52zj-fyvXjN6reXqniosyjQHbK8EYFy11oU1gbQa0K0smlz2VgwYEh7NFpKm5OnoGVQCMHnUlsQVqgg5-zujxuJaLUfxmnDz-p8gfwFuzhKEQ</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Suksmono, A.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>Deconvolution of VLBI images based on compressive sensing</title><author>Suksmono, A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-7c2fe79d81288f05be1183cd73c80606e5a1653387eaef53f410fa735802824f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>basis pursuit</topic><topic>CLEAN</topic><topic>compressive sensing</topic><topic>Deconvolution</topic><topic>Entropy</topic><topic>Extraterrestrial measurements</topic><topic>Filling</topic><topic>Image analysis</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>Image sampling</topic><topic>Radio astronomy</topic><topic>Radio interferometry</topic><topic>synthesis imaging</topic><topic>Very Large Array</topic><topic>VLBI</topic><toplevel>online_resources</toplevel><creatorcontrib>Suksmono, A.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suksmono, A.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deconvolution of VLBI images based on compressive sensing</atitle><btitle>2009 International Conference on Electrical Engineering and Informatics</btitle><stitle>ICEEI</stitle><date>2009-08</date><risdate>2009</risdate><volume>1</volume><spage>110</spage><epage>116</epage><pages>110-116</pages><issn>2155-6822</issn><eissn>2155-6830</eissn><isbn>1424449138</isbn><isbn>9781424449132</isbn><abstract>Direct inversion of incomplete visibility samples in VLBI (very large baseline interferometry) radio telescopes produces images with convolutive artifacts. Since proper analysis and interpretations of astronomical radio sources require a non-distorted image, and because filling all of sampling points in the UV-plane is an impossible task, image deconvolution has been one of central issues in the VLBI imaging. Up to now, the most widely used deconvolution algorithms are based on least-squares-optimization and maximum entropy method. In this paper, we propose a new algorithm that is based on an emerging paradigm called compressive sensing (CS). Under the sparsity condition, CS capable to exactly reconstructs a signal or an image, using only a few number of random samples. We show that CS is well-suited with the VLBI imaging problem and demonstrate that the proposed method is capable to reconstruct a simulated image of radio galaxy from its incomplete visibility samples taken from elliptical trajectories in the uv-plane. The effectiveness of the proposed method is also demonstrated with an actual VLBI measured data of 3C459 asymmetric radio-galaxy observed by the VLA (very large array).</abstract><pub>IEEE</pub><doi>10.1109/ICEEI.2009.5254805</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2155-6822
ispartof 2009 International Conference on Electrical Engineering and Informatics, 2009, Vol.1, p.110-116
issn 2155-6822
2155-6830
language eng
recordid cdi_ieee_primary_5254805
source IEEE Electronic Library (IEL) Conference Proceedings
subjects basis pursuit
CLEAN
compressive sensing
Deconvolution
Entropy
Extraterrestrial measurements
Filling
Image analysis
Image coding
Image reconstruction
Image sampling
Radio astronomy
Radio interferometry
synthesis imaging
Very Large Array
VLBI
title Deconvolution of VLBI images based on compressive sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deconvolution%20of%20VLBI%20images%20based%20on%20compressive%20sensing&rft.btitle=2009%20International%20Conference%20on%20Electrical%20Engineering%20and%20Informatics&rft.au=Suksmono,%20A.B.&rft.date=2009-08&rft.volume=1&rft.spage=110&rft.epage=116&rft.pages=110-116&rft.issn=2155-6822&rft.eissn=2155-6830&rft.isbn=1424449138&rft.isbn_list=9781424449132&rft_id=info:doi/10.1109/ICEEI.2009.5254805&rft_dat=%3Cieee_6IE%3E5254805%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5254805&rfr_iscdi=true