Multitemporal and multisensor signatures evaluation for lithologic classification

Focuses on the evaluation of the potentiality of remote sensing exploitation for geological applications in the Mediterranean area. The test site of the "Fossa Bradanica" (South of Italy) has been considered. Different data sets have been considered: optical multitemporal, microwave multit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Loizzo, R., Sylos Labini, G., Pappalepore, M., Pieri, P., Pasquariello, G., Antoninetti, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2211 vol.3
container_issue
container_start_page 2209
container_title
container_volume 3
creator Loizzo, R.
Sylos Labini, G.
Pappalepore, M.
Pieri, P.
Pasquariello, G.
Antoninetti, M.
description Focuses on the evaluation of the potentiality of remote sensing exploitation for geological applications in the Mediterranean area. The test site of the "Fossa Bradanica" (South of Italy) has been considered. Different data sets have been considered: optical multitemporal, microwave multitemporal and combined optical and microwave. On the basis of a maximum likelihood rule an analysis of the spectral signatures extracted from lithologic classes obtained by cartographic maps and ground truth has been performed, either on LANDSAT TM data or ERS-1 data. In order to reduce the vegetation influence in lithological signature evaluation vegetation mask is used. Then the best data combination and the best season of acquisition for the minimization of the confusion are defined. The obtained results are shown.
doi_str_mv 10.1109/IGARSS.1995.524150
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_524150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>524150</ieee_id><sourcerecordid>524150</sourcerecordid><originalsourceid>FETCH-ieee_primary_5241503</originalsourceid><addsrcrecordid>eNp9zrsOgjAYBeAmxsQbL8DUFxBboCqjMd4GB8WdNFjwN4WS_sXEtxcvs2c5yfmWQ4jPWcA5S2aH3eqcpgFPEhGIMOaC9ciILZYsCsV8EQ6Ih3hnXWIhong-JKdjqx04VTXGSk1lfaXVe0FVo7EUoayla61Cqh5St9KBqWnRiQZ3M9qUkNNcS0QoIP_ohPQLqVF5vx4Tf7u5rPdTUEpljYVK2mf2PRf9xRfOe0DT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multitemporal and multisensor signatures evaluation for lithologic classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Loizzo, R. ; Sylos Labini, G. ; Pappalepore, M. ; Pieri, P. ; Pasquariello, G. ; Antoninetti, M.</creator><creatorcontrib>Loizzo, R. ; Sylos Labini, G. ; Pappalepore, M. ; Pieri, P. ; Pasquariello, G. ; Antoninetti, M.</creatorcontrib><description>Focuses on the evaluation of the potentiality of remote sensing exploitation for geological applications in the Mediterranean area. The test site of the "Fossa Bradanica" (South of Italy) has been considered. Different data sets have been considered: optical multitemporal, microwave multitemporal and combined optical and microwave. On the basis of a maximum likelihood rule an analysis of the spectral signatures extracted from lithologic classes obtained by cartographic maps and ground truth has been performed, either on LANDSAT TM data or ERS-1 data. In order to reduce the vegetation influence in lithological signature evaluation vegetation mask is used. Then the best data combination and the best season of acquisition for the minimization of the confusion are defined. The obtained results are shown.</description><identifier>ISBN: 0780325672</identifier><identifier>ISBN: 9780780325678</identifier><identifier>DOI: 10.1109/IGARSS.1995.524150</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data analysis ; Data mining ; Geology ; Optical sensors ; Remote sensing ; Rivers ; Satellites ; Spectral analysis ; Testing ; Vegetation mapping</subject><ispartof>1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications, 1995, Vol.3, p.2209-2211 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/524150$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,4049,4050,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/524150$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Loizzo, R.</creatorcontrib><creatorcontrib>Sylos Labini, G.</creatorcontrib><creatorcontrib>Pappalepore, M.</creatorcontrib><creatorcontrib>Pieri, P.</creatorcontrib><creatorcontrib>Pasquariello, G.</creatorcontrib><creatorcontrib>Antoninetti, M.</creatorcontrib><title>Multitemporal and multisensor signatures evaluation for lithologic classification</title><title>1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications</title><addtitle>IGARSS</addtitle><description>Focuses on the evaluation of the potentiality of remote sensing exploitation for geological applications in the Mediterranean area. The test site of the "Fossa Bradanica" (South of Italy) has been considered. Different data sets have been considered: optical multitemporal, microwave multitemporal and combined optical and microwave. On the basis of a maximum likelihood rule an analysis of the spectral signatures extracted from lithologic classes obtained by cartographic maps and ground truth has been performed, either on LANDSAT TM data or ERS-1 data. In order to reduce the vegetation influence in lithological signature evaluation vegetation mask is used. Then the best data combination and the best season of acquisition for the minimization of the confusion are defined. The obtained results are shown.</description><subject>Data analysis</subject><subject>Data mining</subject><subject>Geology</subject><subject>Optical sensors</subject><subject>Remote sensing</subject><subject>Rivers</subject><subject>Satellites</subject><subject>Spectral analysis</subject><subject>Testing</subject><subject>Vegetation mapping</subject><isbn>0780325672</isbn><isbn>9780780325678</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9zrsOgjAYBeAmxsQbL8DUFxBboCqjMd4GB8WdNFjwN4WS_sXEtxcvs2c5yfmWQ4jPWcA5S2aH3eqcpgFPEhGIMOaC9ciILZYsCsV8EQ6Ih3hnXWIhong-JKdjqx04VTXGSk1lfaXVe0FVo7EUoayla61Cqh5St9KBqWnRiQZ3M9qUkNNcS0QoIP_ohPQLqVF5vx4Tf7u5rPdTUEpljYVK2mf2PRf9xRfOe0DT</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Loizzo, R.</creator><creator>Sylos Labini, G.</creator><creator>Pappalepore, M.</creator><creator>Pieri, P.</creator><creator>Pasquariello, G.</creator><creator>Antoninetti, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Multitemporal and multisensor signatures evaluation for lithologic classification</title><author>Loizzo, R. ; Sylos Labini, G. ; Pappalepore, M. ; Pieri, P. ; Pasquariello, G. ; Antoninetti, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_5241503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Data analysis</topic><topic>Data mining</topic><topic>Geology</topic><topic>Optical sensors</topic><topic>Remote sensing</topic><topic>Rivers</topic><topic>Satellites</topic><topic>Spectral analysis</topic><topic>Testing</topic><topic>Vegetation mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Loizzo, R.</creatorcontrib><creatorcontrib>Sylos Labini, G.</creatorcontrib><creatorcontrib>Pappalepore, M.</creatorcontrib><creatorcontrib>Pieri, P.</creatorcontrib><creatorcontrib>Pasquariello, G.</creatorcontrib><creatorcontrib>Antoninetti, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Loizzo, R.</au><au>Sylos Labini, G.</au><au>Pappalepore, M.</au><au>Pieri, P.</au><au>Pasquariello, G.</au><au>Antoninetti, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multitemporal and multisensor signatures evaluation for lithologic classification</atitle><btitle>1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications</btitle><stitle>IGARSS</stitle><date>1995</date><risdate>1995</risdate><volume>3</volume><spage>2209</spage><epage>2211 vol.3</epage><pages>2209-2211 vol.3</pages><isbn>0780325672</isbn><isbn>9780780325678</isbn><abstract>Focuses on the evaluation of the potentiality of remote sensing exploitation for geological applications in the Mediterranean area. The test site of the "Fossa Bradanica" (South of Italy) has been considered. Different data sets have been considered: optical multitemporal, microwave multitemporal and combined optical and microwave. On the basis of a maximum likelihood rule an analysis of the spectral signatures extracted from lithologic classes obtained by cartographic maps and ground truth has been performed, either on LANDSAT TM data or ERS-1 data. In order to reduce the vegetation influence in lithological signature evaluation vegetation mask is used. Then the best data combination and the best season of acquisition for the minimization of the confusion are defined. The obtained results are shown.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.1995.524150</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780325672
ispartof 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications, 1995, Vol.3, p.2209-2211 vol.3
issn
language eng
recordid cdi_ieee_primary_524150
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data analysis
Data mining
Geology
Optical sensors
Remote sensing
Rivers
Satellites
Spectral analysis
Testing
Vegetation mapping
title Multitemporal and multisensor signatures evaluation for lithologic classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multitemporal%20and%20multisensor%20signatures%20evaluation%20for%20lithologic%20classification&rft.btitle=1995%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium,%20IGARSS%20'95.%20Quantitative%20Remote%20Sensing%20for%20Science%20and%20Applications&rft.au=Loizzo,%20R.&rft.date=1995&rft.volume=3&rft.spage=2209&rft.epage=2211%20vol.3&rft.pages=2209-2211%20vol.3&rft.isbn=0780325672&rft.isbn_list=9780780325678&rft_id=info:doi/10.1109/IGARSS.1995.524150&rft_dat=%3Cieee_6IE%3E524150%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=524150&rfr_iscdi=true